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Chapter 0

Course Information

Welcome! This is a graduate level topics course on high dimen-

sional statistics. Traditional statistics (parametric statistics), which

concerns methods and the analysis of settings with fixed number

of parameters and increasing number of samples, is by now well-

understood. Over the past decades, however, it becomes increasingly

important to consider models in which the number of parameters

(a.k.a., features, predictors, covariates) grows with the number of

samples. The reasons are probably that with higher computation

powers, it is possible to handle larger number of parameters and

sample sizes; and for larger sample sizes, better prediction can be

achieved using more model parameters.

Foundational work on high dimensional statistics and the related

nonparametric statistics were laid by the Russian school since the

seventies and by Donoho and Johnstone in the early nineties. The
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simplest example problem in high dimensional statistics is sparse

linear regression, which can be solved by the Lasso algorithm for

reasonable data sizes. We will discuss Lasso, its analysis, as well as

other similar algorithms. Moreover, while sparse recovery is certainly

well-studied, recent years have seen growing interests in matrix or

tensor recovery, which share some common ideas and techniques.

Below is a tentative list of topics by weeks.

1. Introduction; Gaussian sequence model

2. Lasso; restricted eigenvalue condition; fast rate

3. Nullspace condition

4. Statistical dimension

5. Graphical Lasso

6. Matrix estimation

7. Robust PCA

8. Information-theoretic technique for lower bounds

9. Empirical distribution of error: leave-one-out

10. Empirical distribution of error: replica

11. Iterative soft/hard thresholding
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12. Approximate message passing

1-5 are mostly sparse linear regression or the related. 2-4 introduce

some tools for analyzing Lasso and provide guarantees on the risk. 8

is about general ideas of showing lower bounds on the risk. 9, 10 are

techniques for more refined analysis that even provides the empirical

distribution of the errors, and 11,12 additional algorithms for sparse

regression. 9, 10, 12 are conceptually more challenging than the

others in the list, but are also of greater interest in recent research

(in my opinion). Papers on these topics are generally challenging to

read, which, in my opinion, is partly because their primary aims are

to present original results to get credits. In this course, however, my

goal is tutorial, so I will “deconstruct” their technique by working

on the simplest model possible. Nevertheless, you are not required

to understand deeply all the topics (see grading below).

Required background. Basic courses in probability and

statistics are assumed. You should also know basic notions of linear

algebra, such as eigenvalue decomposition or singular value decom-

position.

Grading.

• Homework (50%) I will leave a few problems as homework (see

last chapter of this document). There is no TA for this course,

so the homework will not be graded weekly. I recommend

submitting once by the midterm and once by the end of the

term. Also, you are not required to learn all the topics, and

7



hence not required to solve all the problems. Number of credits

will be given next to each problem, and you only need to solve

enough so that the sum ≥ 50.

• Midterm (25%) Take home exam, more or less a homework but

within a fixed time (perhaps 1 week).

• Final project (25%) Read any of the papers below (or some

other you find interesting; you may drop me an email to dis-

cuss). Write a 10-page report. Also recommend presenting

the summary to the class (or upload a video), if convenient.

Discussions on potential research topics are welcome.

Readings Project Examples [updated periodically]

1. D. Amelunxen, M. Lotz, M. McCoy, J. Tropp, Living on the

edge: Phase transitions in convex programs with random data,

Information and Inference, 2014.

2. D. Donoho and J. Tanner, Neighborliness of randomly pro-

jected simplices in high dimensions, PNAS, 2005.

3. T. Cover, Geometrical and statistical properties of systems

of linear inequalities with applications in pattern recognition,

IEEE trans. on electronic computers, 1965.
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4. P. Sur, Y. Chen, and E. Candes, The likelihood ratio test in

high-dimensional logistic regression is asymptotically a rescaled

chi-square, 2017.

5. Narayana P. Santhanam, Martin J. Wainwright, Information-

Theoretic Limits of Selecting Binary Graphical Models in High

Dimensions https://people.eecs.berkeley.edu/~wainwrig/

Papers/SanWai12.pdf

6. I. Daubechies M. Defrise C. De Mol, An iterative thresholding

algorithm for linear inverse problems with a sparsity constraint

https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.

20042

7. Benjamin Recht, Weiyu Xu, Babak Hassibi, Null Space Condi-

tions and Thresholds for Rank Minimization https://people.

eecs.berkeley.edu/~brecht/papers/10.RecXuHas.Thresholds.

pdf

8. Yuchen Zhang, Distributed machine learning with communica-

tion constraints https://www2.eecs.berkeley.edu/Pubs/

TechRpts/2016/EECS-2016-47.pdf

9. Noureddine El Karoui, Derek Bean, Peter Bickel, Chingway

Lim and Bin Yu, On robust regression with high-dimensional

predictors https://citeseerx.ist.psu.edu/viewdoc/download?

doi=10.1.1.294.5920&rep=rep1&type=pdf
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10. Noureddine El Karoui, On the impact of predictor geometry

on the performance on high-dimensional ridge-regularized gen-

eralized robust regression estimators, Probab. Theory Relat.

Fields (2018) 170:95-175

11. Mohsen Bayati, Andrea Montanari, The dynamics of message

passing on dense graphs, with applications to compressed sens-

ing https://arxiv.org/pdf/1001.3448.pdf

12. Yash Deshpande, Andrea Montanari, Information-theoretically

Optimal Sparse PCA https://arxiv.org/pdf/1402.2238.

pdf

13. The replica trick for the analysis of random matrices https://

meisong541.github.io/jekyll/update/2019/08/04/Replica_

method_1.html#ref1
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Chapter 1

Linear Regression

Regression is a fundamental problem in statistics. Given paired ob-

servations (X1, Y1), (X2, Y2),. . . , (Xn, Yn), the statistician wants to

find a relationship f between the predictors Xi’s and the responses

Yi’s. The response for a fresh inputX in future can then be predicted

as f (X).

Often, each Yi is a real number, whereas each Xi is a vector in

Rd. Making the ansatz that f (X) = X>θ is linear in the unknown

coefficient θ, we may reduce the problem to linear regression, i.e. to

finding the unknown coefficient vector θ.

To evaluate algorithms for regression, it is useful to analyze simple

generative models for the data. The Gaussian linear model is given

by

Yi = X>i θ + ξi, i = 1, . . . , n (1.1)
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where ξ1, . . . , ξn are i.i.d. Gaussian; or, in the matrix form:

Y = Xθ + ξ. (1.2)

Regarding the genesis of the matrix X (equivalently, its row vec-

tors X1,. . . ,Xn), there are two types of models that are commonly

studied:

• Fixed design models: where X is a deterministic matrix

chosen by the statistician.

• Random design models: where X1,. . . ,Xn are i.i.d. random

vectors drawn from some distribution on Rd.

1.1 Gaussian Sequence Model

The model is

Yi = θi + ξi, i = 1, . . . , d (1.3)

where ξ1,. . . ,ξd are i.i.d. N (0, σ2) random variables. This corre-

sponds to a Gaussian linear model with identity fixed design matrix

X = Id. The Gaussian sequence model is perhaps the simplest since

the observations of the coordinates of the coefficient vector are de-

coupled. Yet, the model sheds light on many key ideas that will carry

over into general linear regression models or beyond. One key idea,

which we are going to explore in the next, is that we can do better

than simply returning θ̂ = Y , by using an idea called shrinkage.

12



1.1.1 Sparsity adaptive thresholding

Let us explore how shrinkage helps in the case of sparse signals. We

shall use the following notations: for θ ∈ Rd,

‖θ‖0 :=

d∑
i=1

1{θi 6= 0}. (1.4)

The set of k-sparse vectors is denoted as

B0(k) := {θ : ‖θ‖0 = k}. (1.5)

Note that the naive estimator θ̂(Y ) = Y has squared error

E‖θ̂(Y )− θ‖2
2 = E‖θ̂(θ + ξ)− θ‖2

2 (1.6)

= E‖ξ‖2
2 (1.7)

= dσ2. (1.8)

In contrast, if the estimator has the oracle information of supp(θ) :=

{i : θi 6= 0}, then the statistician can use the estimator

θ̂i = Yi1{i ∈ supp(θ)}, (1.9)

and the squared error should be kσ2 instead, by a similar calculation

as above. If k scales linearly with d, the naive estimator achieves the

performance of the oracle estimator up to a constant factor of d/k.

However, more interesting is the case where k is much smaller than

d asymptotically (as a model example, think of k as a polynomial of

d, say k = d−0.5). This is the setting where the following estimator

shows power:
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Hard thresholding estimator:

• Input: vector θ ∈ Rd and parameter τ ∈ (0,∞).

• Output: θ̂ where

θ̂i := Yi1{|Yi| > τ}. (1.10)

How should we pick the threshold τ? The idea to pick it just large

enough so that there is no type-I error, with constant probability.

Using the union bound, we can see that

max
1≤i≤d

|ξi| ≤ σ
√

2 log(2d/δ) (1.11)

with probability at least 1− δ.

Theorem 1. Consider the Gaussian sequence model and the

hard thresholding estimator with

τ = 2σ
√

2 log(2d/δ). (1.12)

For any θ ∈ B0(k), we have

‖θ̂ − θ‖2
2 . σ2k log

2d

δ
(1.13)

with probability at least 1− δ.
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Proof. As mentioned, with probability at least 1− δ there is

max
1≤i≤d

|ξi| ≤ τ/2 (1.14)

which we call the event A. Now under A, we have

|θ̂i − θi| = |Yi − θi|1{|Yi| > τ} + |θi|1{|Yi| ≤ τ} (1.15)

= |ξi|1{|θi + ξi| > τ} + |θi|1{|Yi| ≤ τ} (1.16)

≤ τ

2
1{|θi + ξi| > τ} + |θi|1{|Yi| ≤ τ} (1.17)

≤ τ

2
1{|θi| >

τ

2
} + |θi|1{|θi| ≤

3

2
τ} (1.18)

. min{|θi|, τ} (1.19)

for each i = 1, . . . , d. This yields

‖θ̂ − θ‖2
2 .

d∑
i=1

min{|θi|2, τ 2} . ‖θ‖0τ
2. (1.20)

Remarkably, within a factor of log 2d
δ , the hard thresholding esti-

mator achieved the performance of the oracle estimator. Moreover,

the estimator is adaptive in the sense that τ is selected without

reference to the sparsity level k.

The following estimator shares similar desirable properties (achiev-

ing O(σ2k log 2d
δ ) error with probability at least 1− δ, and adaptiv-

ity), while having the advantage of being continuous:
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Soft thresholding estimator:

• Input: vector θ ∈ Rd and parameter τ ∈ (0,∞).

• Output: θ̂ where

θ̂i := (Yi − τ )1{Yi > τ} + (Yi + τ )1{Yi < −τ}. (1.21)

1.1.2 Stein’s paradox and the James-Stein es-
timator

In this section we do not impose any sparsity constraint on ground

truth θ. By translation invariance (Is it really true? See Exercise 3),

it then seems that nothing more can be done than the naive estimator

θ̂naive = Y. (1.22)

It is therefore paradoxical that the following actually holds:

Theorem 2. The estimator θ̂naive is inadmissible, in the sense

that there exists another estimator θ̂ such that

E‖θ̂ − θ‖2
2 ≤ E‖θ̂naive − θ‖2

2 (1.23)

for any ground truth θ ∈ Rd, and moreover, there exists at least

one θ such that the inequality is strict.
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The James-Stein estimator is one such estimator θ̂. It is defined

as

θ̂JS :=

(
1− σ2(d− 2)

‖Y ‖2

)
Y. (1.24)

Clearly, the idea is still based on shrinkage. In retrospect, the para-

dox is resolved since the problem is not completely translation in-

variant: the noise vector ξ is centered (see Exercise 3). Intuitively,

a larger ‖Y ‖ suggests a larger “signal-to-noise ratio”, and that the

estimator should shrink less.

Stein considered estimators of the following form, which clearly

encapsulates the estimator of (1.24).

θ̂ = g(Y )Y, (1.25)

where g : Rd → R is a function to be chosen.

Stein’s unbiased risk estimator (SURE) gives an estimate of

the mean squared error (risk) for (1.25):

Lemma 3. Assume that g is a function satisfying regularity con-

ditions1. Suppose that θ̂ is given by (1.25). Then an unbiased

estimator of the risk E[‖θ̂ − θ‖2] is given by

SURE = σ2d(2g(Y )− 1) + 2σ2
d∑
i=1

Yi
∂g

∂yi
(Y ) + ‖Y ‖2

2(1− g(Y ))2.

(1.26)
1See [Tsy08].
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Note that SURE is a function only of Y (not of the unknown θ),

and it will be shown that its expectation equals E[‖θ̂ − θ‖2]; this is

the meaning of “unbiased estimator of the risk”. Let us remark that

estimators of the risk is broadly useful in statistics: for example in

nonparametric statistics the nuisance parameters (such as the band-

width) can be tuned by minimizing an estimator of the risk which

can be computed from the observations. Another common technique

for risk estimation is cross-validation.

Proof of Lemma 3. We begin with the expansion

E‖θ̂ − θ‖2
2 =

d∑
i=1

E(g(Y )Yi − θi)2 (1.27)

=

d∑
i=1

{
E(Yi − θi)2 + 2E[(θi − Yi)(1− g(Y ))Yi]

+E[Y 2
i (1− g(Y ))2]

}
. (1.28)

Clearly E(Yi − θi)2 = σ2. We now apply the Gaussian integration

by parts (Exercise 4) to find

E[(θi − Yi)(1− g(Y ))Yi] = −σ2E
[

1− g(Y )− Yi
∂g

∂yi
(Y )

]
(1.29)

which get rids of the dependence on θ, and the claim follows.

Applying Lemma 3 to the James-Stein estimator, we obtain the

following

18



Theorem 4. Let d ≥ 3. For any θ ∈ Rd,

E‖θ̂JS − θ‖2 = dσ2 − E
[
σ4(d− 2)2

‖Y ‖2

]
(1.30)

which is strictly smaller than E‖Y − θ‖2. In particular, θ̂ = Y

is inadmissible.

Proof. From the expression in SURE we see that

E‖θ̂ − θ‖2 = dσ2 + E[W (Y )], (1.31)

where we have defined the function

W (y) := −2σ2d(1− g(y)) + 2σ2
d∑
i=1

yi
∂g

∂yi
(y) + ‖y‖2

2(1− g(y))2.

(1.32)

If g(y) = 1− c
‖y‖2 for some c > 0, then we can explicitly compute

W (y) :=
1

‖y‖2

(
−2dcσ2 + 4σ2c + c2

)
. (1.33)

Minimizing W (y) over c > 0 yields

copt = σ2(d− 2), (1.34)

and the claim follows by plugging in copt into SURE.
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1.2 Gaussian Linear Model and the
Least Squares Regression

The next a few sections concern the Gaussian linear model (1.2):

Y = Xθ + ξ (1.35)

where X ∈ Rn×d. First, let us review the basic least square estimator,

which will reveal the typical behavior of the risk. Solving

θ̂LS ∈ argminθ∈Rd ‖Y − Xθ‖2
2 (1.36)

gives

θ̂LS = (X>X)−1X>Y (1.37)

when X has full column rank. In general, (X>X)−1 is replaced by

the Moore-Penrose pseudoinverse of X>X.

Theorem 5. The mean square error of the least square estimator

is

E‖Xθ̂LS − Xθ‖2
2 = dσ2. (1.38)
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Proof. Assuming σ2 = 1, we have

E‖Xθ̂LS − Xθ‖2
2 = E‖X(X>X)−1X>Y − Xθ‖2

2 (1.39)

= E‖X(X>X)−1X>ξ‖2
2 (1.40)

= tr(X(X>X)−1X>) (1.41)

= tr((X>X)−1X>X) (1.42)

= tr(Id) (1.43)

= d. (1.44)

Remark 1. We see that the scaling of the mean square risk is the

same as in the Gaussian sequence model (1.8), which is the degree of

freedom multiplied by the noise variance. Moreover, the result does

not depend on (the full rank) X at all!

Remark 2. In general if X has rank r, we can show that E‖Xθ̂LS −
Xθ‖2

2 = rσ2. Moreover, if the noise ξi is subgaussian instead of

Gaussian, a similar result of E‖Xθ̂LS − Xθ‖2
2 . rσ2 holds, using a

different derivation via the maximal inequality [Rig15, Theorem 2.2].

1.3 `0 and `1 Regularized Regressions

The least squares estimator does not apply to the case of d > n.

Moreover, as we saw in the case of Gaussian sequence model (Theo-

rem 1), when θ is k-sparse we should expect the mean square error
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to scale as kσ2 (up to logarithmic factors) instead of dσ2. Moti-

vated by the soft and hard thresholding estimators in the Gaussian

sequence model, it is natural to consider the Bayes Information Cri-

terion (BIC) estimator and the Lasso estimator:

θ̂BIC ∈ argminθ∈Rd
{
‖Y − Xθ‖2

2 + τ 2‖θ‖0

}
; (1.45)

θ̂L ∈ argminθ∈Rd
{
‖Y − Xθ‖2

2 + 2τ‖θ‖1

}
(1.46)

where we recall that

‖θ‖0 :=

d∑
i=1

1{θi 6= 0}; (1.47)

‖θ‖1 :=

d∑
i=1

|θi|. (1.48)

Indeed, we can check that when n = d and X = Id, BIC and Lasso

are reduced to the hard-thresholding and the soft thresholding esti-

mators (Exercise 5).

Let us remark that the contents of this and the following sections

are mostly from [Rig15], where X has spectral norm scaling as
√
n.

However, in this note we rescale X so that the spectral norm is

order 1, so that the correspondence to the Gaussian sequence model

(X = Id case) is cleaner. Correspondingly, there is no extra 1
n factor

in front of the 2-norms in (1.45)-(1.46).
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Computation issues.

Exactly solving BIC is known to be NP-hard, since it requires enu-

merating all possible sparsity patterns supp(θ) := {i : θi 6= 0}. In

contrast, the Lasso estimator is a convex optimization and can be

solved efficiently by a number of algorithms. One of the most popular

methods is coordinate gradient descent, which has been implemented

in the glmnet package in R.

Fast rate for the Lasso.

Under a restricted eigenvalue condition for X, we will show that

Lasso can achieve mean square error of the same kσ2 log(. . . ) order

as the soft/hard-thresholding estimator for the Gaussian sequence

model. This is called the fast rate for the Lasso, as opposed to

the slow rate which holds for a more relaxed class of X (see [Rig15,

Section 2.4]).

Definition 6. We say that X satisfies the (k, κ)-restricted eigen-

value condition (RE) if

inf
|S|≤k

inf
θ∈CS

‖Xθ‖2
2

‖θS‖2
2

≥ κ (1.49)

where CS = {θ : ‖θSc‖1 ≤ 3‖θS‖1}.

Remark 3. Our definition (1.49) is slighted different from some lit-

erature by a factor of n and also the denominator has θS instead
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of θ; in [RWY10] the restricted eigenvalue condition is defined as
1
n inf |S|≤k infθ∈CS

‖Xθ‖22
‖θ‖22
≥ κ (and as a consequence other parts in the

theory are rescaled).

Remark 4. A “typical behavior” for random matrices is that RE

is satisfied when n ≥ k log d; see Corollary 1 and Section 3.2 in

[RWY10] for more precise statements.

The following result is taken from [Rig15, Theorem 2.18]

Theorem 7. Consider the Gaussian linear model (1.2). Let

n ≥ 2. Assume that the ground truth ‖θ∗‖0 ≤ k, and X sat-

isfies the (k, 1/2)-restricted eigenvalue condition and that each

column satisfies ‖Xj‖2
2 ≤ 2. Then the Lasso estimator θ̂L with

regularization parameter satisfying

2τ = 8σ

(√
log(2d) +

√
log

1

δ

)
(1.50)

satisfies

‖Xθ̂L − Xθ∗‖2
2 . kσ2 log(2d/δ) (1.51)

with probability at least 1− δ.

Proof. First, we write out the optimality condition for the Lasso

estimator:

‖Y − Xθ̂L‖2
2 ≤ ‖Y − Xθ∗‖2

2 + 2τ‖θ∗‖1 − 2τ‖θ̂L‖1. (1.52)
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Comparing with our goal of bounding ‖Xθ̂L − Xθ∗‖2, we see that

we should use Y = Xθ∗ + ξ to open up the squares in the above

inequality. This yields

‖Xθ̂L − Xθ∗‖2
2 ≤ 2ξ>X(θ̂L − θ∗) + 2τ‖θ∗‖1 − 2τ‖θ̂L‖1. (1.53)

The hard part now is to control ξ>X(θ̂L − θ∗). The difficulty lies

in the fact that θ̂L and ξ are correlated. A few intuitive ideas for

handling similar situations in high-dimensional statistics include:

• “sup-out” θ̂, i.e., use ξ>X(θ̂L−θ∗)
‖X(θ̂L−θ∗)‖2

≤ supx : ‖x‖2≤1 ξ
>x .

√
n

(with high probability), so that ξ>X(θ̂L − θ∗) .
√
n‖X(θ̂L −

θ∗)‖2. An example of this argument can be found in [Rig15,

Theorem 2.2] about the mean square error of the least squares

estimator.

• The `1-regularization forces θL to be “low-complexity”, so that

it cannot be too correlated with ξ. (In the extreme case where

θL is a constant, we obviously have E[ξ>X(θ̂L − θ∗) = 0].)

The derivation here will be essentially fleshing out the second idea.

With probability ≥ 1− δ we have

ξ>X(θ̂L − θ∗) ≤ ‖ξ>X‖∞‖θ̂L − θ∗‖1 (1.54)

≤ τ

2
‖θ̂L − θ∗‖1 (1.55)
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where the first step follows by Hölder’s inequality and the second

follows by the assumption ‖Xj‖2
2 ≤ 2 for each column, and the

bound on the Gaussian max in Exercise 1. Combining (1.55) and

(1.53), we obtain

‖Xθ̂L − Xθ∗‖2
2 ≤ τ‖θ̂L − θ∗‖1 + 2τ‖θ∗‖1 − 2τ‖θ̂L‖1 (1.56)

= τ‖θ̂LS − θ∗S‖1 − τ‖θ̂LSc‖1 + 2τ‖θ∗S‖1 − 2τ‖θ̂LS‖1

(1.57)

≤ 3τ‖θ̂LS − θ∗‖1 − τ‖θ̂LSc‖1 (1.58)

where we have used θ∗S = θ∗ and the triangle inequality. Thus, 3‖θ̂LS−
θ∗‖1 ≥ ‖θ̂LSc‖1 holds, and by Cauchy-Schwarz and the restricted

eigenvalue condition,

‖θ̂LS − θ∗‖1 ≤
√
k‖θ̂LS − θ∗‖2 ≤

√
2k‖X(θ̂L − θ∗)‖2. (1.59)

Plugging this into (1.58), we find ‖Xθ̂L − Xθ∗‖2
2 ≤ 3τ

√
2k‖X(θ̂L −

θ∗)‖2 or equivalently

‖Xθ̂L − Xθ∗‖2 ≤ 3τ
√

2k. (1.60)
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1.4 Basis Pursuit and the Null Space
Condition

In this section we introduce the Basis Pursuit (BP) algorithm and

its exact recovery property in the noiseless setting under a null space

condition. Recall that the Lasso algorithm (1.46) has inputs Y and

X, and selects θ̂ by solving the following:

θ̂L ∈ argminθ∈Rd
{
‖Y − Xθ‖2

2 + 2τ‖θ‖1

}
. (1.61)

Now if X has full column rank and τ ↓ 0 (meaning that ‖Y −Xθ‖2
2

has a much higher weight than ‖θ‖1), we see that θ̂L converges to the

solution of the following basis pursuit linear program (introduced

by [CHE98]):

θ̂BP ∈ argminθ : Y=Xθ ‖θ‖1. (1.62)

Definition 8. Fix X ∈ Rn×d and k ∈ {1, 2, . . . }. We say X
satisfies the exact recovery property of order k if for any k-sparse

vector θ∗ ∈ Rd and

y := Xθ∗, (1.63)

the BP algorithm with inputs X and y returns the solution θ̂BP = θ∗.

Note that there is no additive noise in (1.63), hence the generative

model is deterministic and we used the lowercase letter y.
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Definition 9. Fix X ∈ Rn×d and k ∈ {1, 2, . . . }. We say X satisfies

the null space condition of order k if

‖zS‖1 < ‖zSc‖1, ∀z ∈ N (X) \ {0}, S : |S| ≤ k (1.64)

where N (X) denotes the null space of X.

The definition of the null space condition appeared in earlier work

of Donoho and Huo [DH06]; Feuer and Nemirovski [FN03], and was

further explored by Cohen et al. [CDD09]. The significance of the

null space condition is seen in its equivalence to the exact recovery

by BP in the noiseless setting:

Theorem 10. For given X ∈ Rn×d and k ∈ {1, 2, . . . }, the null

space condition and the exact recovery condition of order k are

equivalent.

The equivalence of the null space condition and exact recovery

has been discussed in a number of papers (Cohen et al.[CDD09];

Donoho and Huo [DH06]; Elad and Bruckstein [EB02]; Feuer and

Nemirovski [FN03]) for more discussion of restricted nullspaces and

equivalence to exact recovery of basis pursuit.

Proof of Theorem 10. First, assume that the null space condition

is satisfied. Assume that θ∗ is a k-sparse vector with support S, and

y := Xθ∗. To show the exact recovery property, we need to show

that for any θ′ ∈ Rd, θ′ 6= θ∗ satisfying Xθ′ = Xθ∗, there is

‖θ′‖1 > ‖θ∗‖1. (1.65)
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Define z := θ′ − θ∗ 6= 0, we see that z ∈ N (X), and hence ‖zS‖1 <

‖zSc‖1 by the null space property. Therefore,

‖θ′‖1 = ‖θ′S‖1 + ‖θ′Sc‖1 (1.66)

= ‖θ′S‖1 + ‖zSc‖1 (1.67)

> ‖θ′S‖1 + ‖zS‖1 (1.68)

≥ ‖θ′S − zS‖1 (1.69)

= ‖θ∗S‖1 (1.70)

= ‖θ∗‖1 (1.71)

as desired, hence the exact recovery property holds.

Conversely, suppose that the exact recovery property holds. Now

pick any z ∈ N (X), z 6= 0. Define θ∗ := zS (where we recall that

zS is defined by zS(i) := z(i)1i∈S, i− 1, . . . , d) and θ′ := −zSc. We

have Xθ∗ = Xθ′ and therefore the exact recovery property implies

‖θ∗‖1 < ‖θ‖1. This is equivalent to ‖zS‖1 < ‖zSc‖1 and hence the

null space property holds.

The equivalence between exact recovery and the null space con-

dition can be extended to certain nonconvex optimization problems

(Exercise 6). Furthermore, a version of the null space condition can

be shown to be equivalent to the robust recovery property under

the noisy observation model y = Xθ∗ + ξ, that is,

‖θ̂BP − θ∗‖2

‖ξ‖2
≤ c (1.72)
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for some constant c independent of ξ and θ∗; see [LJG15] for details.

Comparison with RE.

Proposition 11. The restricted eigenvalue condition (RE) in

Definition 6 is stronger than the null space property.

Proof. Suppose that (k, κ)-RE holds for X but the null space prop-

erty of order k fails. Then there exists z ∈ N (X), z 6= 0 such that

‖zS‖1 ≥ ‖zSc‖1 where |S| = k. This implies zS 6= 0 and z ∈ CS
where CS is as defined in Definition 6. The restricted eigenvalue

condition implies

‖Xz‖2
2 ≥ κ‖zS‖2

2 > 0 (1.73)

where we assumed κ > 0, This contradicts z ∈ N (X), hence the

null space condition must hold.

1.5 NSC for Random Designs

In this section we show that the null space conditions holds with

high probability under the random design where X ∈ Rn×d has i.i.d.

N (0, 1/n) entries and k . n/ log d. Up to the logarithmic term, this

is the best we can expect. Our proof is based on Gordon’s escape

through the mesh theorem.
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Definition 12. The Gaussian width of a set K ⊆ Rd is defined as

w(K) := E sup
x∈K

G>x (1.74)

where G ∼ N (0, Id).

Theorem 13 (Gordon). Let K be a subset of the unit Euclidean

sphere Sd−1 in Rd. Let ν be a uniformly distributed2 random

(d− n)-dimensional subspace of Rd. Assume that

w(K) <
√
n. (1.75)

Then ν ∩ K = ∅ with probability at least

1− 2.5 exp

(
−(n/

√
n + 1− w(K))2

18

)
. (1.76)

The proof of Theorem 13 in [Gor88] is based on the Gaussian

comparison inequalities, which is a type of results establishing in-

equalities between the (expectations of the) extremal values of two

Gaussian processes with related covariance structures. This is usu-

ally a topic of a high dimensional probability course which we shall

not get into.

With the help of Gordon’s theorem we can establish the null space

property under the i.i.d. Gaussian random designs when n & k log d

[RV08], which is essentially the best we can hope for.

2That is, the distribution of the subspace is rotation-invariant; or, the distribution is the
Haar measure on the Grassmannian.
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Theorem 14. Let d ≥ 10, k ≥ 1, and n ≥ 400k log d. Let X ∈
Rn×d be a random matrix where each entry is i.i.d. N (0, 1/n).

Then X satisfies the null space condition of order k with proba-

bility at least 1− 2.5d−k/18.

Proof. For any S ⊆ {1, 2, . . . , d}, define

KS := {z ∈ Sd−1 : ‖zSc‖1 ≤ ‖zS‖1} (1.77)

and define

K :=
⋃

S : |S|=k

KS. (1.78)

We now wish to upper bound w(K) by controlling the upper tail of

supx∈KG
>x, which, in turn, is based controlling the upper tail fo

supx∈KS G
>x and applying the union bound over S. Note that for

any x ∈ KS, we have G>x = G>SxS + G>ScxSc. Moreover,

G>SxS ≤ ‖G>S ‖2 (1.79)

and

G>ScxSc ≤ ‖G>Sc‖∞‖xSc‖1 (1.80)

≤ ‖G‖∞‖xSc‖1 (1.81)

≤ ‖G‖∞‖xS‖1 (1.82)

≤ ‖G‖∞
√
k‖xS‖2 (1.83)

≤
√
k‖G‖∞ (1.84)
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Therefore supx∈KG
>x ≤ supS : |S|=k ‖GS‖2 +

√
k‖G‖∞. We have

E[
√
k‖G‖∞] ≤

√
k(
√

2 log 2d+1) (this can be shown from the bound

on the Gaussian max Exercise 1), whereas

E[ sup
S : |S|=k

‖GS‖2]

=

∫ ∞
0

P[ sup
S : |S|=k

‖GS‖2 > λ]dλ (1.85)

≤
√
k +

√
2k log d +

∫ ∞
t=k log d

P[ sup
S : |S|=k

‖GS‖2 >
√
k +
√

2t]d(
√

2t)

(1.86)

≤ 2
√

2k log d + 2dk
∫ ∞
k log d

e−td(
√

2t) (1.87)

= 2
√

2k log d + 2dk
∫ ∞
√

2k log d

e−s
2/2ds (1.88)

≤ 2
√

2k log d + 2 (1.89)

where (1.87) follows by the tail bound on the chi-square distribu-

tion (Exercise (7)) together with the union bound which gives an

additional
(
d
k

)
≤ dk factor. Thus we have shown that

w(k) ≤
√
k(
√

2 log 2d + 1) + 2
√

2k log d + 2 (1.90)

≤ 10
√
k log d (1.91)

which means that the condition (1.75) in Gordon’s theorem is sat-

isfied. Applying Gordon’s theorem with ν := N (X) shows that
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N (X) ∩ K = ∅ with probability at least 1− 2.5d−k/18.

Remark 5. For the restricted eigenvalue condition (which is stronger

than the null space condition according to Proposition 11), it is also

true that n & k log d suffices; see Corollary 1 in [RWY10] for the

i.i.d. random designs. In fact, the bound in Corollary 1 in [RWY10]

holds for the more general class of random designs where the rows

are arbitrary Gaussian vectors with possibly correlated entries. The

argument of [RWY10] is more lengthy than our Theorem 14 but the

ideas are rather standard by today’s standards: the goal is essentially

to bound the tail probability of a Rayleigh quotient. This is based

on two components 1) the expectation of the Rayleigh quotient is

bounded using a comparison theorem for the Gaussian process (sim-

ilar to Gordon’s theorem). 2) The deviation from the expectation is

controlled using concentration inequalities. Again, these are com-

mon topics in a high dimensional probability course, which we will

not touch deeply in our high dimensional statistics course.

1.6 More on Convex Geometry

In the previous section we have seen a proof of the null space condi-

tion using Gordon’s theorem, which says that a set on the sphere with

small Gaussian width will miss a random hyperplane with high prob-

ability. As mentioned, the Gaussian width is essentially the mean

width from convex geometry. In this section, we discuss a different
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approach for establishing the null space condition (among other re-

sults in high dimensional regression) by Amelunxen, Lotz, McCoy

and Tropp [ALMT14]. While Gordon’s theorem [Gor88] relied on

the Gaussian comparison theorem, the approach of [ALMT14] has a

more geometric flavor and also yields more general results.

1.6.1 A General Result on the Intersection of
Convex Cones

First definition of the statistical dimension.

A set K in Rd is said to be a convex cone if it is a cone (i.e., x ∈ K
implies λx ∈ K for all λ ≥ 0) and is convex. We define the statistical

dimension of a closed convex cone K as

δ(K) := E[‖PK(G)‖2
2] (1.92)

where G ∼ N (0, Id) and PK(G) := argminz∈K ‖G− z‖2.

An equivalent definition of the statistical dimension (which ap-

plies to general sets in Rd) will be given in Section 1.6.3.

The statistical dimension of K equals the square of Gaussian

width of K ∩ Sd−1 up to an additive constant; see Exercise 9.

The following result is found in Theorem I in [ALMT14].

Theorem 15. Fix η ∈ (0, 1). Let C and K be closed convex cones

in Rd, and let Q ∈ Rd×d be a random orthogonal matrix (with

35



rotationally invariant distribution). Then

δ(C) + δ(K) ≤ d− aη
√
d =⇒ P[C ∩QK 6= {0}] ≤ η (1.93)

δ(C) + δ(K) ≥ d + aη
√
d =⇒ P[C ∩QK 6= {0}] ≥ 1− η (1.94)

where aη :=
√

8 log(4/η).

If K is a (d − n)-dimensional subspace, it is easy to see from

the definition that δ(K) = d − n. Then (1.93) implies that if

δ(C) ≤ n − aη
√
d then P[C ∩ QK 6= {0}] ≤ η. This is already

implied by Gordon’s theorem (Theorem 13) since w2(C ∩ Sd−1) ≤
δ(C) ≤ w2(C ∩Sd−1) + 1 (Exercise 9). On the other hand, Gordon’s

theorem did not provide the converse part (1.94). Note, however,

a converse of Gordon’s theorem for specific choices of C are easy to

check (Exercise 8), and for the application in null space condition it

is easy to see the near sharpness of the n & k log d bound. Never-

theless, Theorem 15 is surprising since it shows that the statistical

dimension/Gaussian width along is enough to determine the inter-

section probability, and that a phase transition exists for all convex

cones (with a window size of ∼
√
d for the statistical dimension).

1.6.2 Implication for Basis Pursuit

Given θ ∈ Rd, define the descent cone

D(θ) := {z ∈ Rd : ∃ε > 0, ‖θ + εz‖1 ≤ ‖θ‖1}, (1.95)
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that is, the set of directions at which the objective of the basis pur-

suit is decreased. Using a similar argument as in the proof of the

equivalence between NSC and the exact recovery (Section 1.4), it is

easy to see that

Given X, θ, BP exactly recovers θ ⇐⇒ D(θ) ∩N (X) = {0}.
(1.96)

The difference between this claim and Theorem 10 is that the former

is about a condition of X and θ while the latter is about a condition

of X and k.

If θ ∈ Rd is k-sparse, using an argument similar to Theorem 14

we can show that δ(D(θ)) = Θ(k log d) (i.e. equals k log d up to

constant factors) when d is much larger than k; see Exercise 10.

Combining this observation with Theorem 15, we obtain:

Proposition 16. Suppose that X ∈ Rn×d and its null space is

a (uniformly) random (d − n)-subspace, and θ ∈ Rd is k-sparse

where d is much larger than k (d ≥ kτ for some τ > 1). Then

there there exists universal constants c, C > 0 such that

n ≥ C

(
k log d +

√
d log

1

η

)
=⇒ P[BP exactly recovers θ] ≥ 1− η;

(1.97)

n ≤ c

(
k log d−

√
d log

1

η

)
=⇒ P[BP exactly recovers θ] ≤ η.

(1.98)
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The part (1.97) is already implied by Theorem 14. Moreover,

Theorem 14 is stronger since it provides a lower bound on the proba-

bility that BP recovers any k-sparse vector. Let us also remark that

the factor log d in front of k is not removed in (1.97) even though we

are looking at a specific instance of θ; indeed, while the log d factor

can be removed in (1.89) when we bound E[‖GS‖2] instead, the log d

factor in E[
√
k‖G‖∞] still remains.

Finally, let us remark that Theorem 15 has many applications in

linear inverse problems beyond the analysis of BP, including demixing

and low rank matrix recovery. Please refer to [ALMT14] for more

details.

1.6.3 Proof Sketch

In this section we mention some ingredients for the proof of Theo-

rem 15 in [ALMT14]. The materials require more background and

are only intended for interested readers.

Intrinsic volumes.

A central idea of the proof is to define the so-called intrinsic volume

random variable [MT14, LMN+20], show its concentration property,

and its connection to the statistical dimension. The intrinsic volume

random variable has a distribution on {1, 2, . . . , d}, where the prob-

abilities are called the (normalized) intrinsic volumes. There are
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two equivalent definitions:

• One definition given in Definition 5.1 in [ALMT14] is as follow-

ing: First, if K is a polyhedral cone (i.e., an intersection finitely

many half spaces), then Ṽj(K) is defined as the probability that

PK(G) lies in the relative interior of a j-dimensional face of K.

As before, PK(G) denotes the projection of a standard Gaus-

sian vector onto K. Then the definition can be extended to a

general closed cone K via approximation (in the conic Haus-

dorff metric) by polyhedral cones. It is clear from the definition

that
d∑
j=0

Ṽj(K) = 1. (1.99)

• Another definition is through the spherical Steiner formula,

for which we refer to [MT14]. Here for simplicity, let us describe

instead the intrinsic volume for convex bodies (compact convex

sets with nonempty interior) via the standard (i.e. not spher-

ical) Steiner formula. Note, though, that convex bodies are

not cones and the corresponding intrinsic volumes are different

albeit related concepts. The intrinsic volumes for convex bod-

ies are closer to our intuitions about volumes in the Euclidean

space.

The following definition through the mixed volumes is taken

from Definition 1.6 in [LMN+20]. Let K be a convex body
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(compact and having nonempty interior). Let B be the unit

ball in Rd. The Steiner formula states that for any t ≥ 0,

vol(K + tB) =

d∑
j=0

(
d

j

)
W

(d)
j (K)tj (1.100)

where W
(d)
j (K), j = 0, . . . , d are nonnegative numbers, called

the quermassintegrals. In fact, in general, vol(K + tC) is a

polynomial in t for any convex sets K and C, which can be

shown by expressing the volume using the support function of

the convex sets (see e.g. [SVH19]) with coefficients being the

mixed volumes. The intrinsic volumes are defined by

Vd−j(K) =
1

κj

(
d

j

)
W

(d)
j (K) (1.101)

for j = 0, . . . , d, where κj denotes the volume of the unit ball

in Rj. As a matter of fact, the intrinsic volumes are intrinsic: if

K is embedded in a higher dimensional space, intrinsic volumes

defined by (1.101) do not change. Now the normalized intrinsic

volumed are defined by

Ṽj(K) :=
Vj(K)

W (K)
, j = 0, . . . , d (1.102)

where

W (K) :=

d∑
j=0

Vj(K). (1.103)
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Finally, let us comment that the distribution of the (conic) in-

trinsic volume random variable is invariant under scaling, since if K
is a closed convex cone, then tK = K for any t > 0. In contrast,

the distribution of the intrinsic volume random variable of a convex

body is not invariant under scaling. Indeed, Vj is j-homogenous; In

fact, limt→∞ Vj(tK) = 1{j = d} for convex body K.

Second definition of the statistical dimension.

The statistical dimension defined in (1.92) can be alternatively de-

fined as the expectation of the intrinsic volume random variable. The

proof of equivalence is shown in [MT14].

Conic kinematic formula.

The proof of Theorem 15 in [ALMT14] relied on the following conic

kinematic formula:

Theorem 17. Let C and K be closed convex cones in Rd, one of

which not a subspace3, and Q be a (uniformly) random orthogo-

3The formula does not hold when both C and K are linear subspaces, in which case Ṽ
becomes the indicator of the dimension. One might think of approximating of a subspace by
convex cones which are not subspaces and applying a continuity argument for Ṽ ; however,
approximation of a subspace is not so easy due to the convex cone constraint.
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nal matrix. Then

P[C ∩QK 6= {0}] =

d∑
i=0

i−1∑
j=0

(1 + (−1)i−j+1)Ṽi(C)Ṽd−j(K).

(1.104)

We refer this result to p260 in [SW08]. In the well-cited paper

[ALMT14], this result was presented in Fact 2.1 as the following

formula:

P[C ∩QK 6= {0}] =

d∑
i=0

(1 + (−1)i+1)

d∑
j=i

Ṽi(C)Ṽd+i−j(K) (1.105)

which appears to be incorrect (the formula is not symmetric in the

roles of C and K, and it fails when we consider the example where

the intrinsic volume random variables for C and K are concentrated

around some i0 and j0).

In fact, (5.8) stated an equivalent but more compact formula:

P[C ∩QK 6= {0}] =

2d∑
k=d+1

(1 + (−1)k−d+1)Ṽk(C × K) (1.106)

where C ×K denotes the product set in R2d. Using the fact that the

conic intrinsic volume of a product set can be computed by convolu-

tion (Corollary 5.1 in [MT14]),

Ṽk(C × K) =
∑
i+j=k

Ṽi(C)Ṽj(K), (1.107)
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we obtain (1.104).

Concentration of the intrinsic volume random variable.

The last key technical ingredient for the proof of Theorem 15 is the

concentration property of the intrinsic volume random variable. This

was shown in Theorem 6.1 in [ALMT14] and improved in [MT14] for

convex cones and in Theorem 1.11 in [LMN+20] for convex bod-

ies (via a beautiful information theoretic argument). Concentration

states that the intrinsic volume random variable is close to its mean

with high probability. For example, a basic (though not the strongest

possible) result from Theorem 1.11 in [LMN+20] states that

Var(ZK) ≤ 4d (1.108)

where ZK denotes the intrinsic random variable associated with the

convex body K. (This is nontrivial since a random variable over

{1, 2, . . . , d} may have a variance as large as n2/4.) Analogous vari-

ance bound for the conic intrinsic volume random variable can be

found in Theorem 4.5 in [LMN+20]. High probability bounds can

then be deduced from the variance bound via the Chebyshev in-

equality.

Using Theorem 17 and the concentration of the intrinsic volume

random variables ZK and ZC, Theorem 15 can be proved using about

one page (see [ALMT14]). Here we give a short heuristic proof just

to illustrate the idea. Note that the double sum in (1.104) is over
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i and j such that i − j is odd. An interlacing property [ALMT14]

shows that we can approximate by alleviating this parity constraint

while reducing a factor of 2. Thus

P[C ∩QK 6= {0}] ≈
d∑
i=0

i−1∑
j=0

Ṽi(C)Ṽd−j(K) (1.109)

=

d∑
i=0

d∑
l=0

Ṽi(C)Ṽl(K)1i+l≥d+1 (1.110)

= E[1{ZC + ZK ≥ d + 1}] (1.111)

≈ 1{E[ZC + ZC] ≥ d + 1} (1.112)

where the last approximation follows since ZC and ZK are close

to their expectations with high probability (concentration). The-

orem 15 then follows since E[ZC] = δ(C).
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Chapter 2

Graphical Lasso

This chapter is about graphical lasso, which is an algorithm for learn-

ing the covariance matrix under a sparsity assumption on the preci-

sion matrix (inverse of the covariance matrix).

2.1 Gaussian Graphical Model

Consider a random vector X ∈ Rp following the normal distribution

N (0,Σ). The precision matrix is defined as

Θ = Σ−1. (2.1)

We can construct an undirected graph (V , E) to encode the con-

ditional independence structure of the coordinates of X : let V =

{1, . . . , p} and E ⊆ V × V where

(u, v) /∈ E ⇐⇒ Xu ⊥ Xv|XV\{u,v} (2.2)
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where Xu ⊥ Xv|XV\{u,v} denotes the conditional independence (that

is, there is a Markov chain Xu−XV\{u,v}−Xv). By the Hammersley-

Clifford theorem1, for any u, v ∈ {1, . . . , p},

Xu ⊥ Xv|XV\{u,v} ⇐⇒ Θu,v = 0. (2.3)

In fact, for Gaussian distributions, we can directly prove (2.3) by

computing the conditional covariance (Exercise 11). By (2.3), we see

that in many applications, Θ is a sparse matrix, since the underlying

graphs in many graphical models are sparse.

Suppose that there are n i.i.d. samples x(1),. . . ,x(n) from the dis-

tribution N (0,Θ−1), how can we estimate the covariance? The first

idea is maximum likelihood estimation. Note that up to additive

constants, the log-likelihood function is

`(Θ) =

n∑
i=1

log

(
det1/2(Θ) exp

(
−1

2
x(i)>Θx(i)

))
(2.4)

=
n

2
log det(Θ)− 1

2

n∑
i=1

tr(x(i)x(i)>Θ) (2.5)

=
n

2
log det(Θ)− n

2
tr(SΘ) (2.6)

where S = 1
n

∑n
i=1 x

(i)x(i)> denotes the sample covariance matrix.

1The theorem states that for a general Markov network, the Markov and factorization
properties are equivalent, if the probability distribution has a strictly positive mass or density
(e.g. [LW13]). The latter is always fulfilled in the Gaussian case.

46



The classical theory tells that for fixed p, the maximum likelihood

estimator (MLE) converges to the truth as n→∞. However, in the

regime of p > n, MLE does not even exist (Exercise 12).

The graphical lasso [FHT08] addresses this issue by leveraging

the sparsity of Θ and adding an `1 penalty to the objective function:

minimizeΘ�0 − log det Θ + tr(SΘ) + λ‖Θ‖1. (2.7)

Here, A � B means A − B is a positive-semidefinite matrix; ‖Θ‖1

denotes the sum of the absolute values of entries of Θ, and λ >

0 is a tuning parameter. This is a convex optimization problem

(Exercise 13) with ∼ p2 parameters to optimize.

2.2 Dual Formulation

The problem (2.7) is convex since each summand is convex in Θ.

The dual convex problem is the following:

maximizeΓ: ‖Γ‖∞≤λ log det(S + Γ) + p. (2.8)

The equivalence between (2.7) and (2.8) can be shown by using the

KKT condition to obtain properties of the optimizers [MH12]. Here,

however, we introduce a systematic way of writing out the dual of

any convex optimization:

Theorem 18. Let Λj : Rp → R ∪ {+∞} be convex functions,

j = 1, . . . , k for some positive integer k. Suppose that there exist
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some u1, . . . , uk such that u1 + · · · + uk = 0 and Λj(uj) < ∞,

j = 1, . . . , k, and Λj is upper semicontinuous at uj for some j.

Then

− inf
v∈Rp

k∑
j=1

Λ∗j(v) = inf
u1,...,uk∈Rp : u1+···+uk=0

k∑
j=1

Λj(uj) (2.9)

where Λ∗j denotes the convex conjugate of Λj.

Theorem 18 is a generalization of the Fenchel’s duality theorem

in convex analysis, the latter being the special case of k = 2 and also

presented in a slightly different form. In fact, Theorem 18 holds in

a very general setting where Rp is replaced by a general topological

vector space; see Theorem 4 in [LCCV18].

Equipped with Theorem 18, we can easily show:

Theorem 19. (2.7) and (2.8) are equivalent.

Proof. We would like to have

Λ∗1(Θ) = − log det(Θ); (2.10)

Λ∗2(Θ) = tr(SΘ); (2.11)

Λ∗3(Θ) = λ‖Θ‖1 (2.12)

for Θ ∈ Rp2; this is a p2-dimensional space with inner product tr(·).
If Θ is not positive definite then it is understood that Λ∗1(Θ) = +∞.
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Assuming that the double-conjugates are the functions themselves,

we can compute

Λ1(Γ) = sup
Θ∈Rp2

{tr(ΓΘ) + log det(Θ)} (2.13)

= sup
Θ is psd

{tr(ΓΘ) + log det(Θ)} (2.14)

= −p− log det(−Γ); (2.15)

Λ2(Γ) = sup
Θ∈Rp2

{tr(ΓΘ)− tr(SΘ)} (2.16)

=

{
0 Γ = S

∞ otherwise;
(2.17)

Λ3(Γ) = sup
Θ∈Rp2

{tr(ΓΘ)− λ‖Θ‖1} (2.18)

=

{
0 ‖Γ‖∞ ≤ λ

∞ otherwise.
(2.19)

Indeed, after obtaining these formulae we can directly check that

Λ∗j(Θ) = supΓ{tr(ΓΘ)− Λj(Γ)} is true. Now

sup
Γ1+Γ2+Γ3=0

{−Λ1(Γ1)− Λ2(Γ2)− Λ3(Γ3)}

= sup
‖Γ3‖∞≤λ,Γ2=S

{p + log det(Γ2 + Γ3)} (2.20)

= sup
‖Γ3‖∞≤λ

{p + log det(S + Γ3)} (2.21)
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which is the formula for the dual of the graphical lasso. The equiva-

lence to the graphical lasso is seen from Theorem 18.

2.3 Blockwise Coordinate Descent

The problem (1.46) can be solved very quickly using the coordinate

descent algorithm [WL+08] whereby the coordinates are updated

iteratively via line search. The graphical lasso problem (2.7) can also

be solved by a blockwise coordinate descent algorithm (Friedman,

Hastie, and Tibshirani [FHT08]), which can easily handle problem

size of p = 1000.

The blockwise coordinate descent algorithm actually uses the

lasso solver as a subroutine. The latter, of course, is convex opti-

mization and can be solved in the primal or the dual form. More-

over, the problem (1.46) can also be solved in either the primal or

the dual form. Thus there are at least four versions of the algorithm

from these combinations [MH12]. Here, we briefly describe the one

which is perhaps the simplest - the so called primal-glasso (P-lasso)

in [MH12].

By setting the gradient in (2.7) to zero, we see that the optimizer

Θ must satisfy

−Θ−1 + S + λ sign(Θ) = 0. (2.22)

The algorithm proceeds by iteratively updating Θ, leveraging (2.22).

Suppose that in i-th iteration, the matrix obtained previously is Θ(i),
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and we pick an index l ∈ {1, . . . , p}, and in i-th iteration we make

updates on the l-th row and column of Θ. The index l is selected

cyclically through the iterations; for simplicity of the subsequent

discussions, we suppose that l = p is the last index. Then the

matrix Θ(i) can then be viewed as a 2 × 2 block matrix, which can

be represented as (
Θ

(i)
11 Θ

(i)
12

Θ
(i)
21 Θ

(i)
22

)
. (2.23)

Hereafter, note that notations such as Θ
(i)
12 denote the submatrix in

the block form (rather than a coordinate in the original matrix).

Checking on the condition (2.22) for the upper right block, we

get

1

Θ22 − Θ21Θ−1
11 Θ12

Θ−1
11 Θ12 + S12 + λsign(Θ12) = 0 (2.24)

where we have invoked the Schur complement theorem for the block

matrix inverse. While (2.24) is a complicated formula for Θ, the

idea of iterative algorithms is to replace the complicated parts by

the values of the previous round. We posit that

AΘ
(i)
12 + S12 + λsign(Θ

(i)
12 ) = 0 (2.25)

where

A :=
1

Θ
(i−1)
22 − Θ

(i−1)
21 (Θ

(i−1)
11 )−1Θ

(i−1)
12

(Θ
(i−1)
11 )−1. (2.26)
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However, (2.25) indicates that we can find Θ
(i)
12 by solving the follow-

ing lasso problem:

minimizeβ∈Rp−1
1

2
β>Aβ + S>12β + λ‖β‖1. (2.27)

Once Θ
(i)
12 is obtained, we compute Θ

(i)
22 : Checking on the condition

(2.22) for the lower right block, we get

(Θ−1)22 = s22 + λ. (2.28)

This suggests that we can compute

Θ
(i)
22 =

1

(Θ−1)22
+ Θ

(i)
21 (Θ

(i−1)
11 )−1Θ

(i)
12 (2.29)

according to the Schur complement theorem, where (Θ−1)22 is com-

puted from (2.28). Finally, after Θ
(i)
12 (and consequently, Θ

(i)
21 ) and

Θ
(i)
22 are computed, the i-th iteration is completed. The iterates con-

tinues until convergence.
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Chapter 3

Matrix Estimation

The problem of estimating a sparse vector discussed in Chapter 1

has been well studied, and many of its basic properties are now

understood. In the recent years, matrices and tensors are becoming

increasingly popular in high-dimensional statistics. Some argue that

many practical problems are matrix recovery in disguise; one famous

application is collaborative filtering (as popularized by the Netflix

prize). For a recent video tutorial on the subject, see [YS18]. While

matrices and tensors can certainly be thought of as extensions of

vectors, not all the properties and results immediately carry over,

and many basic statistical and computational questions about matrix

and tensor estimation are under very active research today.

In this chapter we get a glimpse of matrix estimation through a

basic problem of prediction in an additive noise model with linear

measurements. There are other common variants of the problem,
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such as estimating a matrix from incomplete measurements of its

entries, which we will not touch on. However, a common theme

in these problems is that the low-rankness of the matrix is taken

advantage of, just as sparsity is employed in vector estimation.

3.1 Multivariate Regression: Setup

We consider the following multivariate linear regression model:

Y = XΘ∗ + E (3.1)

where X ∈ Rn×d is the design matrix, Θ∗ ∈ Rd×T is the matrix of

unknown parameters, E is Gaussian noise matrix with independent

N (0, σ2) components, and Y ∈ Rn×T are the observations. The goal

is prediction, i.e., to estimate XΘ∗ given X and Y.

The following is an example scenario of application: suppose that

there are n movies, d features of the movies (e.g., duration, music

quality, plot quality. . . ), and T persons. The matrix X contains

values quantifying the qualities of each movie regarding each feature.

The matrix Θ∗ contains values quantifying the preference of each

person for each feature. Thus, it makes sense that Y quantifies the

level of preference of each person for each movie.

Note that each row of Θ∗ indicates how a particular feature is

preferred by all the persons. It is possible that a certain feature (e.g.

duration of the movie) is not quite relevant for the rating, in which
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case the corresponding row in Θ∗ is zero. In general, we might expect

that there are many zero rows in Θ∗; in other words, the columns of

Θ∗ share the same sparsity pattern.

If we assume that there are at most k nonzero rows in Θ∗, then

naively we can just apply Lasso for each column of Θ∗ to obtain Θ̂.

By Theorem 7, the mean square error is then

E‖XΘ̂− XΘ∗‖2
F . σ2kT log d (3.2)

with constant probability. Here, ‖A‖F :=
√∑

ij A
2
ij denotes the

Frobenius norm.

In the next section, we will show that we can do better than (3.2)

by taking into account of the interactions of the columns of Θ∗. First,

the sparsity level k can be reduced to the rank of Θ∗. Second, the

factor log d, which is the price to pay for not knowing the sparsity

pattern, can be get rid of.

3.2 Penalization by Rank

The low-rankness of Θ∗ prompts the consideration of the following

estimator:

Θ̂RK := argminΘ∈Rd×T

{
1

n
‖Y− XΘ‖2

F + 2τ 2 rank(Θ)

}
. (3.3)

We call this estimator by rank penalization with regularity pa-

rameter τ 2. At first sight, this looks similar to the BIC estimator
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introduced in Chapter 1. However, unlike BIC, Θ̂RK can be com-

puted efficiently (Exercise 14).

Now, let us also show that Θ̂RK enjoys good statistical property1:

Theorem 20. Let

τ := 4σ

√
log(12) max{d, T}

n
+ 2σ

√
2 log(1/δ)

n
.

Then with probability 1− δ,

‖XΘ̂RK − XΘ∗‖2
F ≤ 8n rank(Θ∗)τ 2 . σ2 rank(Θ∗)(max{d, T} + log

1

δ
).

(3.4)

It is interesting to note that X does not enter the bound.

Proof. As usual, the optimality condition implies that

‖Y− XΘ̂RK‖2
F + 2nτ 2 rank(Θ̂RK) ≤ ‖Y− XΘ∗‖2

F + 2nτ 2 rank(Θ∗)

(3.5)

which is equivalent to

‖XΘ̂RK − XΘ∗‖2
F ≤ 2

〈
E,XΘ̂RK − XΘ∗

〉
− 2nτ 2 rank(Θ̂RK) + 2nτ 2 rank(Θ̂∗). (3.6)

As usual, the inner product term is the main item we need to con-

trol; intuitively we need to leverage the “low complexity” of Θ̂RK

1Adapted from Theorem 5.5 in [Rig15]
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to show that the two terms in the inner product are approximately

uncorrelated. By Young’s inequality,

2
〈
E,XΘ̂RK − XΘ∗

〉
≤ 2 〈E,U〉2 +

1

2
‖XΘ̂RK − XΘ∗‖2

F (3.7)

where

U :=
XΘ̂RK − XΘ∗

‖XΘ̂RK − XΘ∗‖F
(3.8)

is a unit direction. We then “sup-out” the unit direction to decouple

the noise E and the optimizer Θ̂RK . For notation simplicity, let us

assume below that X is full column rank (if not, we can consider all

inner products in the column space of X instead; this can be done as

an exercise, or see Theorem 5.5 [Rig15]). Then

〈E,U〉2 ≤ ‖E‖2
op‖U‖2

s1 (3.9)

≤ ‖E‖2
op rank(U) (3.10)

= ‖E‖2
op rank(Θ̂RK − Θ∗) (3.11)

≤ ‖E‖2
op(rank(Θ̂RK) + rank(Θ∗)) (3.12)

where ‖ · ‖sp denotes the Schatten p-norm; ‖ · ‖op = ‖ · ‖s∞ denotes

the operator norm of a matrix, i.e., the largest singular value. The

first inequality above is the matrix Hölder inequality; the inequality

follows since by Cauchy-Schwarz, ‖U‖2
s1 =

‖U‖2s1
‖U‖2F

≤ rank(U). Finally,

random matrix theory provides us the estimate

‖E‖2
op ≤ nτ 2 (3.13)
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for the top singular value with probability 1− δ, which gives

〈E,U〉2 ≤ nτ 2(rank(Θ̂RK) + rank(Θ∗)). (3.14)

But (3.6) and (3.7) tell us

‖XΘ̂RK − XΘ∗‖2
F ≤ 4 〈E,U〉2 − 4nτ 2 rank(Θ̂RK) + 4nτ 2 rank(Θ̂∗)

(3.15)

which, together with (3.14), gives the desired result.

Remark 6. More general, the result of Theorem 20 holds in the

more general setting where the error matrix E is subgaussian, i.e.,

has gaussian-like tail when projected to any direction; see [Rig15].

Remark 7. While the rank-penalized estimator can be computed

efficiently, it is also worth considering the “`1 counterpart”, that is,

argminΘ∈Rd×T

{
1

n
‖Y− XΘ‖2

F + τ‖Θ‖s1
}
. (3.16)

Its error property is similar to (3.4) but with an additional multi-

plicative factor of the condition number of X. Its analysis, however,

is quite involved, rather than a simple adaptation of the proof for

the error estimates in Lasso. See [KLT+11].

3.3 Matrix Completion

Let Θ∗ ∈ Rd×T be an unknown matrix. Let Y be a set of incomplete

observations of the entries of Θ∗; we may think of Y as a matrix
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obtained by replacing some entries of Θ∗ by a question mark.

More generally, we may formulate a problem where Y = A(Θ∗)

is a set of linear measurements of Θ∗:

Y1 := A1(Θ∗) = 〈A1,Θ
∗〉 (3.17)

. . . (3.18)

Yn := An(Θ∗) = 〈An,Θ
∗〉 (3.19)

where A1, . . . , An ∈ Rd×T .

If Θ∗ is low-rank, we may recover it from Y (and the known

A1,. . . ,An) by the following

argminΘ: Y=A(Θ∗) rank(Θ). (3.20)

Unfortunately, unlike the multivariate regression problem where the

linear observation is of the specialized formA(Θ∗) = XΘ∗, we cannot

solve (3.20) efficiently. Nevertheless, we can consider the convex

relaxation

argminΘ: Y=A(Θ∗) ‖Θ‖s1 (3.21)

which can also be recast as a semidefinite programming problem; see

[CR09].
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Chapter 4

Robust PCA

4.1 Principal Component Analysis (PCA)

Principal component analysis (PCA) is a common dimension reduc-

tion technique. Given n samples X = [x1, . . . , xn] ∈ Rn×d that are

centered, PCA finds r directions that best explain the most variance

of the data:

minimizeL : rank(L)=r‖X− L‖F . (4.1)

In other words, we find the best rank-r approximation of X under

the Frobenius norm. The optimization is easily solved by keeping

the r largest singular values, thanks to the rotation invariance of the

Frobenius norm (Exercise 14).
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4.2 Robust PCA

The optimization (4.1) fails when there are corrupted samples or

outliers. In that case, the (additive) error can be thought of as a

sparse matrix with possibly very large nonzero entries. The problem

can therefore be formulated as disentangling sparse and low-rank

matrices: Suppose we are given a matrix

M = L + S ∈ Rm,n (4.2)

where L is low-rank and S is sparse, can we recover both L and S

from M? There are a few examples of applications:

Example 21. Clustering/community recovery. Suppose that there

are n persons from r communities, and the connectivity matrix

L is defined by

Li,j := 1{i and j are from the same community} (4.3)

for i, j ∈ {1, . . . , n}. Then L has rank at most r (why?). Suppose

that we observe M which is the connectivity structure but with

a few flips. Then S := M −L is sparse. Disentangling L and S

will allow us to reconstruct the community structure.

Example 22. Videos surveillance. Suppose that the video data

is stored in a matrix M ∈ Rm×n where m is the number of pixels

in each frame and n is the number of frames. The background
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does not change much across the frames, and hence should cor-

respond to a low-rank matrix L (why?). On the other hand, the

foreground (such as a person walking past) should correspond to

a sparse matrix S since it is supported on a short space/time

interval. Thus, disentangling S and L may allow us to extract

useful information from the video.

Example 23. Graphical model with latent factors. Recall (2.3)

that the zero pattern of the precision matrix Θ encodes the con-

nectivity structure in the Gaussian graphical model. Now sup-

pose that the Gaussian vector [XS, XL] is from a large Gaussian

graphical model, and S and L are some sets of indices. If this

large graphical model is sparse, the precision matrix may not be

sparse XS (why?); however, if we further have that L is a small

set, then

Cov−1(XS) = ΘS − ΘS,LΘ−1
L ΘL,S (4.4)

is the sum of a sparse matrix and a low-rank matrix.

4.2.1 Incoherence

Disentangling L and S is not always possible, since a matrix might

be simultaneously low-rank and sparse. First, consider a matrix

M = uv> (4.5)
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where u = v = [1, 0, 0, . . . , 0]. Since M is low-rank and sparse,

either L = M , S = 0 or L = 0, S = M is plausible. On the other

hand, if M = uv> still but u = v = [1/
√
n, . . . , 1/

√
n], then M is

rank-1 but not sparse, hence we should expect L = M and S = 0.

In general, the issue is that u and v should be incoherence with

the basis used to measure sparsity. In the rest of the chapter, we

shall assume m = n in (4.2) for simplicity, though the results can be

generalized, mutatis mutandis.

Definition 24. Let M = UΣV > be singular value decomposition,

and r = rank(M). Define the coherence parameter µ1 as the smallest

number such that

max
i
‖U>ei‖2

2 ≤
µ1r

n
, (4.6)

max
i
‖V >ei‖2

2 ≤
µ1r

n
, (4.7)

where e1, . . . , en form the standard basis.

Definition 25. Given M = UΣV >, the joint coherence parameter

µ2 is the smallest number such that

‖UV >‖∞ ≤
√
µ2r

n2
. (4.8)

The parameters µ1 and µ2 are related: in general

µ1 ≤ µ2 ≤ µ2
1r; (4.9)

63



see Exercise 16.

Our goal is to show that L and S can be successfully disentangled

when µ1 and µ2 are small. Naturally, we can solve this by a convex

optimization, with 1-Schatten norm promoting low-rankness and the

L1-norm promoting sparsity. This leads to

minimizeL, S‖L‖s1 + λ‖S‖1 s.t. M = L + S (4.10)

where λ > 0 is a regularity parameter balancing the two terms. In

[CLMW11], it is shown that the simple convex optimization (4.10)

is, in some sense, nearly optimal:

Theorem 26. Suppose that rank(L) . n
max{µ1,µ2} log2 n

; the nonzero

entries of S are randomly located, and ‖S‖0 ≤ ρsn
2 for some

constant ρs > 0. Let M = L + S. Then (4.10) recovers L and S

with high probability.

Remark 8. While µ1 and µ2 are related (4.15), the gap might be

large. Is it possible to improve the rank constraint on L in The-

orem 26 to n
µ1polylog(n)? This scaling is achievable for the related

matrix completion problem (Section 3.3); see the result in [Che15].

However, it is not achievable for the robust PCA problem in (4.10),

under the hardness assumption of the planted clique problem1; see

the proof in [Che15]. More generally, this is along the line of the

1Karp [Kar77] conjectured in 1976 that there is no efficient algorithm for finding a planted
clique of size (1+ε) log2 n in an Erdos-Renyi graph of size n with edge connection probability
1/2. Nowadays, many people believe that in fact, there is no polynomial algorithm for finding
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body of recent works about the average-case computational hard-

ness of statistical problems under the hardness of the planted clique,

which was initiated by [BR+13].

Note that the rank of L can be almost the largest possible (which

is n up to logarithmic factors), and the support size of the sparsity

component S is also almost the largest possible (which is order n2).

Also, the sparse component S can have arbitrary signs and magini-

tudes.

The proof of Theorem 26 relies on the constructing dual certifi-

cate [CLMW11]. To get a flavor of why convex duality can be used

in certifying the optimality of solution of convex optimization, see

Exercise 15. We shall not include here the full proof of Theorem 26,

which is a bit lengthy.

4.2.2 Guarantee via Convex Geometry

We shall demonstrate how the convex geometry tools in Section 1.6

can be used to bound the probability of successfully disentangling

the sparse and the low-rank components. The setting here is taken

from [ALMT14, Example 2.11], called rank-sparsity decomposition

[CSPW11], which is a bit different from the setting in the preceding

sections.

a planted clique of size O(nc) with c < 1/2, and have used this as an assumption in numerous
proofs of average-case hardness results. However, there seems to be no good reason for this
belief except that strong people have failed in finding such an algorithm. If you can find
one, you will be instantly famous and find a very good job!
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Suppose that we observe M0 = L0+U(S0) where L0 is a low-rank

matrix, S0 is sparse, and U is a known orthogonal transformation on

the linear space of matrices. Then we can attempt to disentangle L0

and S0 by solving the following convex optimization:

minimize ‖L‖s1 s.t. ‖S‖1 ≤ ‖S0‖1, M0 = L + U(S). (4.11)

Note the differences from the setting in (4.10): here U is known,

and it is an orthogonal transformation on the space of matrices

(viewed as vectors in Rn2), not necessarily left and right multiply-

ing orthogonal matrices as in SVD. In particular, U(S0) may not be

low-rank! Also, the sparsity level of the unknown S0 is used as a

parameter in (4.11).

Due to the convexity of (4.11), L0 and S0 are guaranteed to be

the solution if there is no nonzero ∆ ∈ Rn2 such that the following

holds: there exists ε > 0 such that

‖L0 + ε∆‖s1 ≤ ‖L0‖s1; (4.12)

‖S0 − εU−1(∆)‖1 ≤ ‖S0‖1. (4.13)

Using the notation for the descent cone in Section 1.6, the above is

equivalent to

∆ ∈ D(L0, ‖ · ‖s1); (4.14)

−U−1(∆) ∈ D(S0, ‖ · ‖1). (4.15)

Since U is a random rotation, the condition is equivalent to saying

that D(L0, ‖ · ‖s1) and a randomly rotated D(S0, ‖ · ‖1) have no
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nontrivial intersection. We can thus bound this probability using

the tools in Section 1.6.

In [ALMT14], it is shown that if r = rank(L0) scales linearly in

n, then the statistical dimension of D(L0, ‖ · ‖s1) is order n2. The

formula for the prefactor of n2 is also obtained, but rather compli-

cated, and the analysis is intricate. In this note, we give a simple

derivation of a slighter cheaper version of the result. Using an argu-

ment similar to Theorem 14, we show that the statistical dimension

of D(L0, ‖ · ‖s1)is O(rn) (with a possibly worse prefactor).

Theorem 27. Let L0 ∈ Rn2 be a rank-r matrix. Then we can

bound the Gaussian width

w(D(L0, ‖ · ‖s1) ∩B2) = O(
√
rn) (4.16)

where B2 denotes the unit ball (under the Frobenius norm) in

the space of matrices. By Exercise 9, we can also bound the

statistical dimension as O(rn).

Proof. The proof is similar to the proof of Theorem 14. First, by

applying SVD, we can assume without loss of generality that

L0 =

(
Σ 0

0 0

)
(4.17)

where Σ ∈ Rr×r is a diagonal matrix with positive diagonal entries.

The subgradient of ‖·‖s1 at L0 consists of all matrices of the following
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form: (
Ir×r 0

0 A

)
(4.18)

where A ∈ R(n−r)×(n−r) is an arbitrary matrix with operator norm

bounded in [−1, 1] (Exercise 17). Thus D(L0, ‖ · ‖s1) consists all

matrices of the form

∆ =

(
∆1 ∆2

∆3 ∆4

)
(4.19)

where

tr(∆1) + ‖∆4‖s1 ≤ 0. (4.20)

Now let G ∈ Rn2 be a random matrix with i.i.d. N (0, 1) entries.

Suppose that in the block form,

G =

(
G1 G2

G3 G4

)
. (4.21)

We have

sup
∆∈B2∩D(L0,‖·‖s1)

〈G1,∆1〉 ≤ ‖G1‖F . (4.22)

Similarly,

sup
∆∈B2∩D(L0,‖·‖s1)

〈G2,∆2〉 ≤ ‖G2‖F ; (4.23)

sup
∆∈B2∩D(L0,‖·‖s1)

〈G3,∆3〉 ≤ ‖G3‖F . (4.24)
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Moreover,

sup
∆∈B2∩D(L0,‖·‖s1)

〈G4,∆4〉 ≤ ‖G4‖s∞ sup
∆∈B2∩D(L0,‖·‖s1)

‖∆4‖s1 (4.25)

≤ ‖G4‖s∞ sup
∆∈B2∩D(L0,‖·‖s1)

tr(−∆1) (4.26)

≤ ‖G4‖s∞
√
r. (4.27)

Thus,

w(D(L0, ‖ · ‖s1) ∩B2)

= E[ sup
∆∈B2∩D(L0,‖·‖s1)

〈G,∆〉] (4.28)

≤ E[‖G1‖F ] + E[‖G2‖F ] + E[‖G3‖F ] +
√
rE[‖G4‖s∞]. (4.29)

≤
√
nr +

√
r ·O(

√
n− r) (4.30)

≤ O(
√
nr) (4.31)

The step (4.30) used results about the top singular value in a random

matrix, which follows from a standard ε-net argument (e.g. [vH14]).

Theorem 28. Suppose that we observe M0 = L0 +U(S0) ∈ Rn2,

where

lim
n→∞

1

n
rank(L0) = 0; (4.32)

lim
n→∞

log n

n2
‖S0‖1 = 0, (4.33)
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and U is a known orthogonal transformation on the linear space

of matrices. Then (4.11) exactly recovers L0 and S0 with proba-

bility tending to 1 as n→∞.

Proof. In Theorem 14 and Theorem 27, we have shown the bounds

on statistical dimensions:

δ(D(S0, ‖ · ‖1)) = O(‖S0‖1 log n); (4.34)

δ(D(L0, ‖ · ‖s1)) = O(rank(L0)n). (4.35)

Under our assumptions on the rank and sparsity, we have

δ(D(S0, ‖ · ‖1)) + δ(D(L0, ‖ · ‖s1)) = o(n2) (4.36)

which implies that−U(D(S0, ‖·‖1)) andD(L0, ‖·‖s1) have only triv-

ial intersection with probability tending to 1 (Theorem 15). These in

turn imply the exact recovery of L0 and S0 according to the analysis

around (4.14)-(4.15).
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Chapter 5

Lower Bounds

Lower bounds on statistical risks generally rely on information-theoretic

techniques. Consider, for example, the Gaussian sequence model in

Chapter 1. For an arbitrary θ ∈ Rd and i.i.d. N (0, σ2) noise, the

naive estimator θ̂ = Y or the James-Stein estimator give

E‖θ̂ − θ‖2
2 = O(dσ2). (5.1)

Moreover, for θ ∈ B0(k), we can use a hard thresholding estimator

with threshold τ = Θ(σ
√

log d) to achieve

‖θ̂ − θ‖2
2 = O(σ2k log d). (5.2)

with constant (say 0.9) probability; see Theorem 1. From the proofs

of (5.1) and (5.2) we can see that they are in fact the true scalings

of the risks of these estimator (assuming k is much smaller than d).

But can there be other estimators that achieve better scalings?
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In this chapter, we will introduce general tools for lower bounds

which, in particular, show that no estimators can perform strictly

better than the scalings in (5.1) and (5.2). Three methods for lower

bounds are widely known to statisticians: Le Cam’s, Assouad’s and

Fano’s [Yu97]. These methods are based on inequalities connecting

information-theoretic measures (e.g. KL divergence) and operational

quantities (estimation or testing errors). Among them, Fano’s is

simple enough, and, in some sense, stronger than Le Cam’s and

Assouad’s (see [Yu97, p428], which is attributed to Birgé). We will

only cover Fano’s method. As we will see, the heart of the game

is to construct an appropriate testing problem corresponding to the

original estimation problem.

5.1 From Estimation to Testing

In this section we consider a general estimation problem where the

parameter space Θ is a metric space equipped with metric d. The

observed random variable Y follows a known probability distribution

Pθ once the parameter θ ∈ Θ is specified. The idea of lower bounding

the estimation error is find a discrete subset of Θ, called packing, such

that distinct parameters θ and θ′ in the packing are well-separated

under the metric distance. Then, a good estimator can be easily

converted to a good M -ary testing scheme where the hypotheses are

elements in the packing.
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Definition 29. A subset A of Θ is called an ε-packing, if for any

θ1, θ2 ∈ Θ, θ1 6= θ2, we have

d(θ1, θ2) > ε. (5.3)

Theorem 30. Suppose that A = {θ1, . . . , θM} is a 2D-packing

(D > 0), and that there exists an estimator θ̂ = θ̂(Y ) such that

inf
θ∈Θ

P[d(θ̂, θ) ≤ D] ≥ 1− δ (5.4)

for some δ ∈ [0, 1]. Then there exists a map ψ : Y → {1, . . . ,M}
such that

min
j∈{1,...,M}

Pθj [ψ(Y ) = j] ≥ 1− δ. (5.5)

Proof. We simply choose

ψ(Y ) := argminj=1,...,M d(θ̂(Y ), θj) (5.6)

and break ties arbitrary (if exist). By assumption, for each j ∈
{1, . . . ,M} and with probability 1 − δ we have d(θ̂(Y ), θj) ≤ D.

Since A is a 2D-packing, by the triangle inequality of the metric we

see that

d(θ̂(Y ), θi) > D (5.7)

for any i 6= j. Therefore ψ(Y ) = j, and the claim follows.
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5.2 Fano’s Inequality

The next ingredient for the lower bound is to show the impossibility

of good M -ary hypothesis testers. This relies on the Fano inequality

in information theory. First, let us introduce a few notations in

information theory.

Given two probability measures P and Q on the same measurable

space X , define the Kullback-Leibler (KL) divergence

D(P‖Q) :=

∫
log

dP

dQ
(x)dP (x) (5.8)

where dP
dQ denotes the Radon-Nikodym derivative, if P is absolutely

continuous with respect to Q, and +∞ otherwise. By Jensen’s in-

equality, it is easy to see that D(P‖Q) is always nonnegative. More-

over, D(P‖Q) = 0 if and only if P = Q.

Given random variables (W,Y ) on the measurable spaceW×Y
with distribution PWY , define the mutual information

I(W ;Y ) = D(PWY ‖PW × PY ) (5.9)

where PW and PY denote the marginal distributions. IfW is discrete,

we also have1

I(W ;Y ) =
∑
w

D(PY |W=w‖PY )PW (w); (5.10)

1If W is not discrete, we may replace the sum in (5.10) by an integral. There is a
slight issue, though, that D(PY |W=w‖PY ) is not necessarily a measurable function in w (in
some artificially designed but practically uncommon examples), in which case the Lebesgue
integral is not well-defined.
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see Exercise 18.

Theorem 31 (Fano’s inequality). Suppose that (W,Y ) is a pair of

random variables, W is equiprobable on {1, . . . ,M}, and ψ : Y →
{1, . . . ,M} is map. Let δ := P[ψ(Y ) 6= W ]. Then

I(W ;Y ) ≥ (1− δ) logM − h(δ) (5.11)

where h(δ) := δ log 1
δ + (1− δ) log 1

1−δ denotes the binary entropy

function.

Proof. Let (W̄ , Ȳ ) be a pair of random variables with the same

marginal distributions as (W,Y ), but W̄ and Ȳ are independent. In

other words, PW̄ Ȳ = PWPY . Moreover, define the indicators

E := 1{W 6= ψ(Y )}; (5.12)

Ē := 1{W̄ 6= ψ(Ȳ )}. (5.13)

I(W ;Y ) = D(PWY ‖PW̄ Ȳ ) (5.14)

≥ D(PE‖PĒ) (5.15)

= δ log
δ

1− 1
M

+ (1− δ) log
1− δ
1/M

(5.16)

= −h(δ) + (1− δ) logM (5.17)

where (5.15) follows by the data processing inequality of the KL

divergence, since E and Ē are the same functions applied to (W,Y )

and (W̄ , Ȳ ) (why?).
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Roughly speaking, Fano’s inequality tells us that if M -ary hy-

pothesis testing with constant δ ∈ (0, 1) average error probability is

possible, then logM cannot exceed the mutual information (up to a

constant factor).

In statistical applications, it is often convenient to weaken Fano’s

inequality by bounding the mutual information with some KL diver-

gence, which may be easier to compute:

Corollary 32. Consider the setting of Theorem 31, and suppose

that Q is an arbitrary distribution on Y. We have

1

M

M∑
j=1

D(Pj‖Q) ≥ (1− δ) logM − h(δ). (5.18)

where Pj = PY |W=j.

Proof.

I(W ;Y ) = D(PWY ‖PW × PY ) (5.19)

≤ D(PWY ‖PW ×QY ) (5.20)

which is the left side of (5.18) (why?).

Remark 9. Unfortunately, in most of the current statistics literature,

Fano’s inequality is stated in a weaker form involving pairwise KL-

divergences 1
M2

∑M
i,j=1D(Pi‖Pj) (see e.g. [Rig15]). Although this

form appears more symmetrical than Theorem 31 and is useful in
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many applications, it is not strong enough in some applications (e.g.

[TLR21]). In contrast, (32) appears to be more convenient in that

the reference measure Q can be chosen freely, and in particular, one

such that D(Pj‖Q) is easy to compute.

Remark 10. Alternatively, we could have directly proved Corollary 32

by letting Ȳ ∼ Q in the proof of Theorem 31.

5.3 Construction of M-ary Tests

The last technical ingredient needed is a method of constructing the

“right” packing A of Θ. Note that by Theorem 30, we want A to

be such that distinct elements in A are well-separated in the metric

distance. On the other hand, by Corollary 32, we also want the

elements in A to be close in the sense that D(Pθ‖Q) is small for

some Q. We must keep in mind this tension when constructing A.

Constructing a packing is the name of game in coding theory. The

following basic result, called Varshamov-Gilbert bound, is useful in

many statistical applications.

Lemma 33 (Varshamov-Gilbert). There exist positive constants

C1 an C2 such that the following holds for any integers k and d

such that 1 ≤ k ≤ d/8. There exist vectors ω1, . . . , ωM ∈ {0, 1}d
such that
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• The Hamming distance

ρ(ωi, ωj) :=

d∑
l=1

1{ωil 6= ωjl} (5.21)

is at least k
2 for all i 6= j;

• logM ≥ k
8 log

(
1 + d

2k

)
;

• |ωj|0 = k for all j.

It is easy to see the following relation of the Hamming distance

and the `2-distance (the metric in the parameter space):

ρ(ωi, ωj) = ‖ωi − ωj‖2
2. (5.22)

Therefore, we see that Lemma 33 is useful for our construction of

packing under the metric distance.

Lemma 33 shows us we can find many binary vectors in Rd with

Hamming weight k such that the pairwise distance is large. How

good is this lemma? To fix ideas, imagine if we had chosen B to be

the set of all weight k binary vectors instead. Then the cardinality

is (assuming k ≤ d/8)

log |B| = dh(k/d) + o(log d) = Θ(k log
d

k
) (5.23)

where we recall that h(·) denotes the binary entropy function (Ex-

ercise 21). Thus, the size of the packing M in Lemma 33 is already
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the largest possible, up to multiplicative factors. However, for the

naive choice B the pairwise Hamming distance of distinct elements

can be as small as 1, whereas in Lemma 33 it is k/2, which is (up to

a factor of 4) the largest possible for k-sparse binary vectors! This is

the content of Lemma 33.

Proof sketch of Lemma 33. We choose ω1, . . . , ωM by the following

simple algorithm: For i = 1, . . . ,M , choose ωi as any element in

B \
i−1⋃
j=1

B(ωj, k/2) (5.24)

where B is the set of all k-sparse binary vectors, and B(ωj, k/2)

denotes the Hamming ball centered at ωj with radius k/2. It remains

to show that (5.24) is nonempty for i = 1, . . . ,M , which follows by

a simple volume argument : As mentioned, the total number of k-

sparse binary vectors is |B| = exp(dh(k/d) + O(log d)), but

i−1⋃
j=1

B(ωj, k/2) ≤M exp

(
dh(

k

2d
) + O(log d)

)
. (5.25)

Therefore, (5.24) is nonempty as long as

M ≤ exp

(
dh(

k

d
)− dh(

k

2d
) + O(log d)

)
(5.26)

= exp

(
k log

d

k
− k

2
log

2d

k
+ O(log d)

)
(5.27)
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= exp

(
k log

d

k
+ O(log d)

)
. (5.28)

5.4 Lower Bound for Θ = Rd

In this section we show the tightness of (5.1) in the Gaussian sequence

model. Let {ω1 . . . ωM} be as in Lemma 33 with k = d/8. Then

Lemma 33 guarantees that

‖ωi − ωj‖2
2 ≥

k

2
=
d

16
, i 6= j; (5.29)

logM ≥ k

8
log(1 +

d

2k
) =

d

64
log 5. (5.30)

We then choose

θj := βσωj, j = 1, . . . ,M (5.31)

where β > 0 is a constant to be chosen later.

Then we let W be equiprobable on {1, . . . ,M}, and let Y ∼
Pθj = N (θj, σ

2Id) conditioned on W = j. By Corollary 32, any test

ψ : {1, . . . ,M} must satisfy

P[ψ(Y ) = W ] logM − 1 ≤ inf
Q

1

M

M∑
j=1

D(Pθj‖Q). (5.32)
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While the optimal Q in (5.32) is 1
M

∑M
j=1 Pθj , we would rather choose

Q = P0 = N (0, σ2Id), from which we can simply compute

1

M

M∑
j=1

D(Pθj‖Q) = D(Pθ1‖P0) =
dβ2

16
log e. (5.33)

Thus

P[ψ(Y ) = W ] ≤ 4β2 log5 e + O(1/d). (5.34)

Then invoking Theorem 30 withD = σβ
√
d

8 , we see that any estimator

θ̂ must satisfy

‖θ̂ − θ‖2 ≥
σβ
√
d

8
(5.35)

with probability at least 1 − 4β2 log5 e + O(1/d). To sum up, we

have:

Theorem 34. In the Gaussian sequence model, for any δ ∈
(0, 1), there exists c > 0 such that

inf
θ̂

sup
θ∈Rd

P[‖θ̂ − θ‖2 ≥ cσ
√
d] ≥ 1− δ (5.36)

where inf θ̂ means the infimum over all estimators θ̂ : Y → Θ.
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5.5 Lower Bound for Θ = B0(k)

In this section we show the tightness of (5.2) in the Gaussian sequence

model. The proof is similar to the preceding section, but we choose

{ω1 . . . ωM} as in Lemma 33 with arbitrary k ≤ d/8. Most of the

previous computations carry over. We have

P[ψ(Y ) = W ] logM − 1 ≤ inf
Q

1

M

M∑
j=1

D(Pθj‖Q). (5.37)

= D(Pθj‖P0) (5.38)

=
kβ2

2
log e. (5.39)

Thus

P[ψ(Y ) = W ] ≤
kβ2

2 log e
k
8 log(1 + d

2k)
+ O(1/d). (5.40)

Invoking Theorem 30 with D = βσ
√

k
8 , we see that any estimator θ̂

must satisfy

‖θ̂ − θ‖2 ≥ βσ

√
k

8
(5.41)

with probability at least 1−
kβ2

2 log e
k
8 log(1+ d

2k )
+ O(1/d). By choosing β to

be order
√

log d
k , we have:
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Theorem 35. In the Gaussian sequence model, for any δ ∈
(0, 1), there exists c > 0 such that

inf
θ̂

sup
θ∈B0(k)

P

[
‖θ̂ − θ‖2 ≥ cσ

√
k log

d

k

]
≥ 1− δ. (5.42)

Remark 11. In the regime of k = d1−ε where ε > 0, we have log d
k =

Θ(log d), therefore Theorem 35 matches (5.2).
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Chapter 6

Leave-one-out

The first a few chapters have discussed techniques for bounding the

magnitude of errors in regression. Starting from this chapter, we

will introduce a few common methods for establishing the asymp-

totic empirical distribution of the recovered signal θ̂. This can be

viewed as more refined results, since asymptotic empirical distribu-

tion implies the asymptotic magnitude of error. On the other hand,

the knowledge of the asymptotic empirical distribution is very use-

ful for some statistical applications, such as constructing confidence

intervals [JM14][CMW20] or false discovery rate control [LR19].

This chapter introduces the leave-one-out technique. It is more

or less similar to a few other concepts in different contexts, such

as cavity method, Thouless-Anderson-Palmer (TAP), coordinate de-

scent, or predecessor comparison. To put it very simply, it is similar

to how we solve a fixed-point equation in order to determine the limit
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of a sequence of numbers defined by an inductive formula.

6.1 A Pedagogical Example

Let us consider the problem of asymptotic empirical distribution in

least squares. The setting is the following:

(1) A: n× p matrix with i.i.d. N (0, 1) entries.

(2) n/p = δ > 1 is fixed, and n, p→∞.

(3) w ∈ Rn: coordinates are i.i.d. N (0, n).

(4) θ̂ := argminθ∈Rp ‖w −Aθ‖2 = (A>A)−1A>w.

In other words, θ̂ is the solution to least squares regression when

the ground truth θ = 0. This is without loss of generality, since for

general θ we have

(A>A)−1A>(Aθ + w) = θ + (A>A)−1A>w, (6.1)

so the general result is obtained simply by a translation.

Also comment that while the scaling wi ∼ N (0, n) may appear

strange at first sight, it is the right scaling ensuring that (θ̂i)
p
i=1 has

a nontrivial asymptotic empirical distribution.

Goal: we will show that the empirical distribution of (θ̂i)
p
i=1 tends

to N (0, δ
δ−1) (in the sense of weak convergence, asymptotically al-

most surely).
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How nontrivial is the claimed result about the convergence of the

empirical distribution to N (0, δ
δ−1)? Actually, by rotation invariance

it is easy to see that the following vectors are equal in distribution:

θ̂
distribution

= ‖θ̂‖2u (6.2)

where u ∈ Rp is a vector sampled from the unit sphere uniformly at

random and independent of θ̂ (see Exercise 24). Thus, since ‖θ̂‖2 is

concentrated around its mean and the empirical distribution of the

coordinates of u is close to Gaussian (with high probability), it is

not hard to see that the limit law must be Gaussian. On the other

hand, it is nontrivial to show that the variance is δ
δ−1. In the next

section, we will present a general result on the asymptotic empirical

distribution via the leave-one-out technique, which, in particular,

implies that the variance is δ
δ−1.

Before turning to the leave-one-out analysis, let us describe how

to show that the variance is δ
δ−1 using the Marchenko-Pastur Law

about the asymptotic empirical distribution of the singular values of

random matrices, which is perhaps the most natural idea for this toy

problem. Note that

1

p
E[θ̂>θ̂|A] =

1

p
tr
(
(A>A)−1A>Cov(w)[(A>A)−1A>]>

)
(6.3)

=
n

p
tr((A>A)−1) (6.4)

=
1

p
tr((

1

n
A>A)−1) (6.5)
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=

∫
1

x
µp(dx), (6.6)

where µp denotes the empirical distribution of the eigenvalues of
1
nA
>A. By the Marchenko-Pastur law from the random matrix the-

ory (e.g. [Tao12]), we have that µp convergences to the following

limiting distribution (weakly and asymptotically almost surely):

µ(dx) =
1

2π

√
(λ+ − x)(x− λ−)

λx
dx (6.7)

where λ := δ−1 < 1 and λ± := (1±
√
λ)2. Using change of variables

(1− λ)2/x→ t we get∫
1

x
µ(dx) =

δ

δ − 1

∫
µ(dt) =

δ

δ − 1
(6.8)

which is the promised formula for the asymptotic variance. The

above derivation is simple, but it employed the nontrivial Marchenko-

Pastur law from random matrix theory. Many of the techniques we

discuss in this and the next a few chapters have deep connections

to random matrix theory. In fact, one derivation of the Marchenko-

Pastur law based on “predecessor comparison” [Tao12, P172-177] can

be viewed as a version of the leave-one-out analysis.
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6.2 Optimization with Random Instances

Let us consider A, w as defined in (1)-(3) from the previous section.

Define

ε :=
1√
n

w ∈ Rn (6.9)

and

β̂ := argminβ

n∑
i=1

ρ(εi − A>i β), (6.10)

where ρ : R→ [0,∞) is a given convex function, and Ai denotes the

i-th sample (the transpose of the i-th row of A). With such rescaling,

εi, εi−A>i β and ‖β‖2 all have the order of Θ(1) as p→∞. Clearly,

the previous least squares example is the special case where ρ(t) = t2

and θ̂ =
√
nβ̂.

6.2.1 Asymptotic Distribution: A General Claim

In the remainder of the chapter, we discuss a result of El Karoui et

al. [EKBB+13], which characterized the limit of ‖β̂‖2 as p→∞.

First, let us define the prox operator which is useful in convex

optimizations:

proxc(ρ)(x) := argminy{ρ(y) +
1

2c
(x− y)2} (6.11)
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for any c > 0 and x ∈ R. Intuitively, proxc(ρ)(x) is a point close to x,

but also regularized by ρ. As examples, taking c and ρ appropriately,

we can recover the soft and hard thresholding operators (Exercise!)

The leave-one-out analysis in [EKBB+13] shows that the asymp-

totic limit of ‖β‖2 can be computed from a pair of fixed point equa-

tions.

Theorem 36. Let the scalar ε ∼ N (0, 1) and let Z ∼ N (0, r2)+ε,

where r := limp→∞ ‖β̂‖ and β̂ is as in (6.10). Then, there exists

some c > 0 such that

E[(proxc(ρ))′(Z)] = 1− δ−1; (6.12)

δ−1r2 = E[(Z − proxc(ρ)(Z))2]. (6.13)

For a general convex ρ, we can solve (6.12) and (6.13) to find c

and r. For the particular case of least squares where ρ(x) = x2, we

have

proxc(ρ)(x) := argminy{y2 +
1

2c
(x− y)2} (6.14)

=
x

2c + 1
; (6.15)

Z ∼N (0, 1 + r2). (6.16)

Therefore the fixed-point equations become{
1

2c+1 = 1− 1
δ

δ−1r2 =
(

2c
2c+1

)2 · (1 + r2)
(6.17)
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from which we derive that

c =
1

2(δ − 1)
; (6.18)

r2 =
1

δ − 1
. (6.19)

Now the empirical distribution of θ̂ =
√
nβ̂ converges to

N
(

0,
n

p
· r2

)
= N

(
0,
n

p
· 1

δ − 1

)
= N

(
0,

δ

δ − 1

)
. (6.20)

6.2.2 Normal Equation

In the remainder of the chapter, we provide the derivation of The-

orem 36. Technical justifications of some steps are swept under the

rug; we mainly focus on how to “see” the formula in Theorem 36

from the analysis.

The first step is to write the normal equation, that is, the gradient

of the objective function equals zero at β̂. Letting

ψ(x) := ρ′(x), x ∈ R, (6.21)

we have ∑
Aiψ(εi − A>i β̂) = 0. (6.22)

Also define the residues

Ri = εi − A>i β̂. (6.23)
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6.2.3 Leaving out an Observation

Let β̂(i) be the leave one out estimator where the i-th sample is

not used in solving the regression. It satisfies the following normal

equation: ∑
j 6=i

Ajψ(εj − A>j β̂(i)) = 0. (6.24)

Also define, for 1 ≤ j ≤ n,

rj,(i) := εj − A>j β̂(i). (6.25)

Remark that ri,(i) may be understood as an estimate of the prediction

error, which is useful in cross-validation.

Taking the difference of (6.22) and (6.24), and Taylor expanding

ψ(·), we obtain

Aiψ(εi − A>i β̂) +
∑
j 6=i

ψ′(rj,(i))AjA
>
j (β̂(i) − β̂) ≈ 0. (6.26)

Defining the matrix

Si :=
∑
j 6=i

ψ′(rj,(i))AjA
>
j , (6.27)

we can rewrite the above as

β̂ − β̂(i) ≈ S−1
i Aiψ(εi − A>i β̂). (6.28)
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Then

Ri − ri,(i) = −A>i (β̂ − β̂(i)) (6.29)

≈ −A>i S−1
i Aiψ(εi − A>i β̂) (6.30)

≈ − tr(S−1
i )ψ(Ri) (6.31)

with high probability. Here, Step (6.31) follows since Si is indepen-

dent of Ai, implying E[A>i S
−1
i Ai|Si] = tr(S−1

i ). Concentration of

measure implies that A>i S
−1
i Ai is close to its mean with high proba-

bility (see [EKBB+13] for details), hence (6.31). Also, by symmetry,

tr(S−1
i ), i = 1, . . . , n should have approximately the same value.

Therefore we have

c ≈ tr(S−1
i ) (6.32)

for some c > 0. Thus we have the following (approximate) equation

linking the residue and the prediction risk:

Ri − ri,(i) ≈ −cψ(Ri). (6.33)

6.2.4 Leaving out a Predictor

Let us also consider leaving out a predictor. By symmetry of the

distribution ofAi, it is without loss of generality that the p-th column

of A is what is left out.
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For convenience, let us use the following notations:

Ai =

[
Vi

Ai(p)

]
, Vi ∈ Rp−1; (6.34)

β̂ =

[
β̂\p
β̂p

]
, β̂\p ∈ Rp−1. (6.35)

Moreover, let

γ̂ := argminγ∈Rp−1
∑
i

ρ(εi − V >i γ) (6.36)

be the optimal regression vector by leaving out the p-th feature.

Writing out the normal equation, we have∑
i

Viψ(εi − V >i γ̂) = 0. (6.37)

Let us define the leave-out residue

ri,[p] := εi − V >i γ. (6.38)

Taking the difference of (6.37) and (6.22), we obtain (by looking at

the first (p− 1) coordinates and the last coordinate respectively),∑
i

Vi[ψ(Ri)− ψ(ri,[p])] = 0p−1; (6.39)∑
i

Ai(p)ψ(Ri) = 0. (6.40)
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Note that by definition, Ri− ri,[p] = V >i (γ̂− β̂\p)−Ai(p)β̂p. Taylor

expanding ψ(Ri) around ψ(ri,[p]) in the above equations, we have[∑
i

ψ′(ri,[p])ViV
>
i

]
(γ̂ − β̂\p)− β̂p

∑
i

ψ′(ri,[p])ViAi(p) ≈ 0p−1;

(6.41)∑
i

Ai(p)
[
ψ(ri,[p]) + ψ′(ri,[p])(V

>
i (γ̂ − β̂\p)− Ai(p)β̂p)

]
≈ 0

(6.42)

where here and below, ≈ means the remainder term is higher-order

smallness. Rearranging (6.42) yields

β̂p ≈
∑

iAi(p)[ψ(ri,[p]) + ψ′(ri,[p])V
>(γ̂ − β̂\p)]∑

iA
2
i (p)ψ′(ri,[p])

. (6.43)

Moreover, defining

Gp :=
∑
i

ψ′(ri,[p])ViV
>
i , (6.44)

up :=
∑
i

ψ′(ri,[p])ViAi(p), (6.45)

we can rewrite (6.41) as

γ̂ − β̂\p ≈ β̂pG
−1
p up. (6.46)
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Using (6.43) and (6.46) to cancel γ̂ − β̂\p, we obtain

β̂p ≈
∑

iAi(p)ψ(ri,[p])∑
iA

2
i (p)ψ′(ri,[p])− u>pG−1

p up
. (6.47)

As a side remark, β̂p ≈
∑
iAi(p)ψ(ri,[p])∑
iA

2
i (p)ψ

′(ri,[p])
is what we would obtain in

the classical theory where p/n→ 0.

6.2.5 Simplifying u>pG
−1
p up

Let us introduce the notation of the diagonal matrix

D := diag([ψ′(ri,[p])]
n
i=1), (6.48)

and let

A(p) :=

A1(p)
...

An(p)

 , (6.49)

V :=

V >1...
V >n

 . (6.50)

With these notations,

u>pG
−1
p up = [A(p)>DV ][V >DV ]−1[V >DA(p)] (6.51)

≈ tr(DV [V >DV ]−1V >D) (6.52)

=
∑
i

DiiPii (6.53)
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where the last step again used measure concentration and the fact

that A(p) is standard Gaussian independent of D, V . Moreover, we

defined Pii’s as the diagonal values of the projection matrix

P := D1/2V [V >DV ]−1V >D1/2. (6.54)

As a result, we obtain the following approximation of (6.47):

β̂p ≈
∑

iAi(p)ψ(ri,[p])∑
iA

2
i (p)Dii(1− Pii)

. (6.55)

6.2.6 Work on
∑

iA
2
i (p)Dii(1− Pii)

Since Ai(p) is independent of ri,[p] and Pii, we can expect, from the

law of large numbers,∑
i

A2
i (p)Dii(1− Pii) ≈

∑
i

Dii(1− Pii) (6.56)

where we replaced A2
i (p) by its expected value. To compute Pii,

the first try might be Pii = DiiV
>
i G

−1
p Vi ≈ Dii tr(G−1

p ), which is

unfortunately incorrect since Vi is not independent of Gp. Instead,

we shall decompose Gp into the sum of an independent component

and a “coherent” rank-1 component. Define

Gp(i) :=
∑
j 6=i

DjjVjV
>
j . (6.57)
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Using the Sherman-Morrison formula (Exercise 25) for the rank-1

update for matrix inversion, we have

[V >DV ]−1 = [Gp(i) + DiiViV
>
i ]−1 (6.58)

= Gp(i)
−1 − DiiGp(i)

−1ViV
>
i Gp(i)

−1

1 + DiiV >i Gp(i)−1Vi
. (6.59)

Note that the terms in (6.59) are matrices, therefore although the

second term is higher oder of smallness in terms of the trace, it cannot

be neglected at this point, as the two terms will be comparable after

left and right multiplying V >i and Vi. Then using (6.59) we find

1− Pii = 1−DiiV
>
i [V >DV ]−1Vi (6.60)

=
1

1 + DiiV >i Gp(i)−1Vi
. (6.61)

By the independence of Vi and Gp(i) and concentration of measure

again, we have

V >i Gp(i)
−1Vi ≈ tr(Gp(i)

−1) (6.62)

≈ tr(G−1
p ) (6.63)

≈ tr(S−1
i ) (6.64)

≈ c (6.65)

where the approximation errors are up to a multiplicative factor of

1 + o(1). Thus, summing (6.61) over i,∑
i

1

1 + Diic
≈
∑
i

[1− Pii] (6.66)
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= n− tr(P ) (6.67)

= n− (p− 1) (6.68)

where the last step use the fact that P is a projection matrix of rank

p − 1 (almost surely). Now collecting all the above in this section,

we can simply the denominator in (6.55) as follows:∑
i

A2
i (p)Dii(1− Pii) ≈

∑
i

Dii(1− Pii) (6.69)

≈
∑
i

Dii

1 + cDii
(6.70)

=
1

c

∑
i

[
1− 1

1 + cDii

]
(6.71)

≈ 1

c

∑
i

Pii (6.72)

≈ p

c
. (6.73)

Thus by (6.55),

β̂p ≈
c

p

∑
i

Ai(p)ψ(ri,[p]). (6.74)

Since ri,[p] is defined by (V, ε) which is independent of {Ai(p)}ni=1,

E[β̂2
p|V, ε] =

c2

p2

∑
i

ψ2(rri,[p]) (6.75)
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≈ c2

p2

∑
i

ψ2(Ri) (6.76)

where the last step used the fact that rri,[p] ≈ Ri and the continuity of

ψ. While our analysis focused on the p-th feature, the result extends

to the others by symmetry. Thus

E[‖β̂‖2] ≈ c2

p

∑
i

ψ2(Ri). (6.77)

6.2.7 Collecting Terms

So far, we have derived three independent approximate equations:
ri,(i) = Ri + cψ(Ri),

1
n

∑
i

1
1+ψ′(Ri)

≈ 1− p
n,

E[‖β̂‖2] ≈ n
p

[
1
n

∑
i c

2ψ2(Ri)
]
.

(6.78)

Note that by symmetry, (ri,(i), Ri) have the same distribution for

different i. Moreover, for large p we can assume that ‖β̂(i)‖ is nearly

deterministic by measure concentration. Since ri,(i) = εi − A>i β̂(i)

and εi and Ai are independent, we see that ri,(i) is the independent

sum of the Gaussian εi ∼ N (0, 1) and the Gaussian N (0, ‖β̂(i)‖); in

particular, its distribution is determined by ‖β̂(i)‖ ≈ ‖β̂‖. Therefore

there are three independent unknowns in (6.78): ‖β̂‖, The distribu-

tion of Ri, and c.
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6.2.8 Rewriting the Fixed Point Equations

The fixed point equations (6.78) can be rewritten as two independent

equations while suppressing the notation Ri in the meantime. Define

a function gc by

gc(x) := x + cψ(x). (6.79)

Differentiating the objective in (6.14) and setting it zero, we easily

see the functional identity:

g−1
c = proxc(ρ). (6.80)

Moreover, the first equation in (6.78) can be rewritten as

Ri = g−1
c (ri,(i)), (6.81)

therefore,

1

1 + ψ′(Ri)c
=

1

g′c(Ri)
(6.82)

=
1

g′c(g
−1
c (ri,(i)))

(6.83)

= (g−1
c )′(ri,(i)). (6.84)

Using (6.81) and (6.84) we can rewrite the last two equations in

(6.78) as the two fixed point equations in Theorem 36.
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Chapter 7

Replica Method

In this chapter we introduce the replica method, another useful tech-

nique for analyzing high dimensional optimization problems with

random instances. The replica method often allows us to obtain so-

lutions (relatively quickly); however, the method is non-rigorous. It

boils down to the simple fact that

lim
k↓0

1

k
(zk − 1) = ln z, ∀z > 0. (7.1)

Now if Z > 0 is a random variable, and its k-th moment E[Zk]

can be computed and equals f (k) where f is some analytic func-

tion, k = 1, 2, 3 . . . , then we may expect to use (7.1) to compute

E[lnZ] as limt↓0
1
t [f (t) − 1]. This argument is only heuristic since

the k-th moment is only computed for integer k. Nevertheless, this

argument often gives the right answer (as can be verified later by

other techniques). Once we understand the asymptotic behavior of
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E[lnZ] (called the free-energy, which is a function of the tempera-

ture), many useful information about the high dimensional random

object can be deduced.

The replica method was originated from statistical physics since

1970’s; later it was applied to linear inverse problems (see e.g. [Tan02]

for multiuser systems, [GV05] for the minimum mean square estima-

tor; [RFG12] for the maximum a posteriori probability estimator;

[BM11a, JM14] for the Lasso). The calculations involved in those

papers are often rather complicated. In this chapter, we show the

basic idea of the replica method through the simple least squares

problem in Section 6.1, including the intuitions for the Gaussian

limit and the mysterious δ
δ−1 asymptotic empirical variance.

7.1 Proof of the Pedagogical Example

Recall the problem of finding the asymptotic limit of the empirical

distribution of (θ̂i)
p
i=1 in the least squares regression. In the previous

chapter, we showed how this problem can be solved using two meth-

ods, either utilizing the Marchenko-Pastur law of random matrices as

a blackbox result, or deriving fixed point equations by the leave-one-

out technique (which actually characterizes the limiting distribution

in more general convex optimization problems).

Here, we will use the replica method to compute the variance δ
δ−1,

and we will also mention how asymptotic Gaussianity must hold in
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view of the maximal entropy property.

The analysis here is slightly different from [Tan02] and [GV05];

we shall touch on this later after the proof. We will also remark how

the proof will change when one wants to extend this simple least

square example to the `1-regularized (Lasso) case, as was done in

[BM11a, JM14].

7.1.1 The Free Energy

Given δ, we can view the least squares

θ̂ := argminθ∈Rp ‖w −Aθ‖2 (7.2)

as an optimization problem indexed by n and with random instances

w and A. Let us also introduce a parameter β > 0, called the

inverse temperature, and define

Z(β, n) :=

∫
e−

β
2n‖w−Aθ‖2dθ, (7.3)

called the partition function. The energy of the state θ is

E(θ) =
1

2n
‖w −Aθ‖2 (7.4)

The partition function encodes much useful information about the

system. For example, it is easy to see that

− ∂

∂β
lnZ(β, n) =

1

Z(β, n)

∫
E(θ)e−βE(θ)dθ (7.5)
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is the expectation of the energy with respect to the Gibbs measure
1

Z(β,n)e
−βE(θ)dθ. As β → ∞, the Gibbs measure will become con-

centrated around (7.2), the solution to the optimization problem.

Why not define the partition function asZ(β, n) :=
∫
e−

β
2‖w−Aθ‖2dθ,

but with 1
n in the exponent in (9.13)? Note that we generally assume

that β > 0 does not scale with n. Experience with large deviation

theory tells us that we should normalized the exponent so that with

high probability, the exponent − β
2n‖w −Aθ‖2 is order Θ(n).

The free energy is defined as

F (β) := − 1

β
logZ(β, n), (7.6)

and as with the partition function, it also encodes useful information

about the system. The key idea of the proof is thus to compute the

expectation of the free enegry. While it is relatively easy to see that

F (β) is order Θ(n), the nontrivial part is to use the replica method

to determine the prefactor. This is equivalent to finding the speed of

exponential decay of Z(β, n) for typical (w,A), which, by the large

deviation theory, is strictly faster than the speed of exponential decay

of E[Z(β, n)].
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7.1.2 Ew,A

As mentioned around (7.1), our strategy is to compute the moment

E[Zk] and then pass it to the limit k ↓ 0 to obtain E[lnZ].

E[Zk] = Ew,A

∫
e−

β
2n

∑k
a=1 ‖w−Aθa‖2dθ1 . . . dθk (7.7)

=

∫ (
Ee−

β
2n

∑k
a=1(w1−A>1 θ

a)2
)n

dθ1 . . . dθk (7.8)

=

∫
det−n/2(I + βE +

β

n

p∑
j=1

θ
[k]
j θ

[k]>
j )dθ1 . . . dθk (7.9)

where we used the property of Gaussian distribution in (7.31), and

for each j = 1, . . . , p

θ
[k]
j :=


θ1
j

θ2
j
...

θkj

 ∈ Rk. (7.10)

Note that Zk can be understood as the partition function of

k-replicated systems, with energy 1
2n

∑k
a=1 ‖w −Aθa‖2, hence the

name replica method.

7.1.3 Substitute 1
p

∑p
j=1 θ

[k]
j θ

[k]>
j −→ Q

Note that the integrand in (7.9) only depends on the empirical sec-

ond moment Q := 1
p

∑p
j=1 θ

[k]
j θ

[k]>
j , hence we can understand the
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asymptotic behavior of the integral using large deviations theory. If

you are not familiar with large deviations, you may first take a look

at the stand-alone Section 7.3 ahead.

Let us make the ansatz that we can compute the exponent of (7.9)

by supremizing over the empirical distribution µ of θ
[k]
j . This corre-

sponds to the method-of-types in information theory (even though

the domain is R instead of finite sets). Suppose the empirical distri-

bution of (θ1
j , . . . , θ

k
j )pj=1 is µ, and let Θ ∼ µ be a random variable

on Rk. Note that the second moment Q imposes a constraint on µ.

From the large deviation theory (method of types) we have

dθ1 . . . dθk
.
= exp

{
p sup
µ : Eµ[ΘΘ>]=Q

h(µ)

}
dQ (7.11)

= (2πe)pk/2 exp
{p

2
log det(Q)

}
dQ, (7.12)

where
.
= denotes equivalence up to a factor of exp(o(p)), and dQ

denotes the Lebesgue measure on Rk(k+1)/2. Moreover,

h(µ) := E
[

log
1

p(X)

]
. (7.13)

denotes the differential entropy, where p is the density of µ and

X ∼ µ.

Here we can see that the supremizing µ yields a Gaus-

sian measure, since it maximizes the differential entropy

under the second moment constraint.
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7.1.4 p→∞
Recall that we have shown that

E[Zk] =

∫
det−n/2(I + βE +

β

n

p∑
j=1

θ
[k]
j θ

[k]>
j )dθ1 . . . θk (7.14)

.
= (2πe)pk/2

∫
det−n/2(I + βE +

β

δ
Q) · detp/2(Q)dQ,

(7.15)

therefore,

lim
p→∞

1

p
logE[Zk]

=
k

2
log(2πe) + sup

Q is psd

{
−δ

2
log det(I + βE +

β

δ
Q) +

1

2
log det(Q)

}
.

(7.16)

7.1.5 Replica Symmetry Ansatz

Optimizing Q in (7.16) amounts to optimizing k(k + 1)/2 variables,

which is not easily tractable analytically. The Replica Symmetry

Ansatz referring to the a common assumption that the optimizer is

symmetric, which, in this example, means that we assume that the

optimizer is of the form

Q = rI + qE. (7.17)
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In general, replica symmetry ansatz is correct in many basic exam-

ples, but can also fail in many other examples (which is called replica

symmetry breaking).

Using the formula (7.30) for the determinant, we compute (7.16)

as

lim
p→∞

1

p
lnE[Zk]

= sup
r,q

{
−(k − 1)δ

2
ln(1 + βr/δ)− δ

2
ln(1 + βr/δ + βqk/δ + βk)

+
k − 1

2
ln
r

δ
+

1

2
ln
r + qk

δ

}
+
k

2
ln(2πe). (7.18)

7.1.6 Take k → 0

lim
p→∞

1

p
E[lnZ]

= lim
p→∞

lim
k↓0

1

p

1

k
lnE[Zk] (7.19)

= lim
k↓0

1

k
lim
p→∞

1

p
lnE[Zk] (7.20)

= sup
q,r

{
−δ

2
ln(1 + βr/δ)− βq + βδ

2(1 + βr/δ)
+

1

2
ln
r

δ
+
q

2r

}
+

1

2
ln(2πe). (7.21)
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In (7.20), we assumed that the order of limits can be switched, which

is not rigorous.

7.1.7 supr,q

To find the supremizers in (7.21), we take the partial derivatives in

r and q respectively, set them to equal 0, and get

r =
δ

β(δ − 1)
; (7.22)

q =
δ

δ − 1
. (7.23)

Substituting these, compute the supremum value, and take limβ→∞
1
β ,

we get

lim
β→∞

1

β
lim
p→∞

1

p
E[lnZ] = −1

2
(δ − 1). (7.24)

Note, however, that (Exercise 28)

lim
β→∞

1

β
E[lnZ] = − 1

2n
min
θ
‖w −Aθ‖2, (7.25)

Therefore the result of (7.24) agrees with what we can compute di-

rectly:

1

n2
E[‖w −Aθ‖2] = n−1Tr[I−A(A>A)

−1
A>] (7.26)

=
δ − 1

δ
. (7.27)

109



Moreover, the result of (7.23) suggests that the empirical variance

of θ equals δ
δ−1. Which agrees with what we can compute from the

M-P law from random matrix theory or the leave-one-out analysis in

the previous Chapter.

7.1.8 Remarks

If the least squares problem is replaced by LASSO, then a debiased

version of θ also tends to a Gaussian channel. The replica proof of

this can be extracted from [Tan02][GV05] in the multiuser literature

or [JM14] directly stated for LASSO. In that case, we need to replace

the partition function by

Z(β, n) :=

∫
e−

β
2n‖w−Aθ‖2−βλ‖θ‖1dθ.

Subsequently, (7.12) will be replaced by

dθ[k] .= exp

{
p

(
sup

µ : Eµ[ΘΘ>]=Q

h(µ)− βλE[|Θ|]

)}
dQ. (7.28)

From here, [Tan02] proceeds by expressing the exponent using the

moment generating function of the prior distribution (in this case the

Laplace distribution):

Q̃ 7→ E[exp(Tr[Q̃ΘΘ>])]. (7.29)
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More precisely, by the Chernoff bound, the exponent equals the

Legendre transform of the log moment generating function. Then

an important insight: assume that the max over Q̃ in the

computation of the Legendre transform is achieved by

a replica-symmetric Q̃. Thus, the optimization previously in

Section 7.1.7 is now replaced by optimization over the symmetric

parameters in both Q and Q̃. [JM14] used the Fourier transform

instead of Legendre transform, and a similar replica symmetric as-

sumption of the dual matrix Q̃ was made.

7.2 Appendix: Useful Facts

• Let E be the matrix whose entries are all 1;

det(λI + rE) = λk−1(λ + rk), (7.30)

where k is the dimension.

• If Y ∼ N (0,Σ), then

E[e−
1
2

∑
Y 2
i ] = det−1/2(I + Σ). (7.31)

• Inverse formula

(I + aE)−1 = I− a

1 + a dim
E. (7.32)
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7.3 Appendix: Large Deviations

In probability theory, the theory of large deviations concerns the

asymptotic behavior of remote tails of sequences of probability dis-

tributions [dem10]. If you have no experience with large deviations,

you may learn it through the following basic example, which has a

similar flavor as the calculation in Section 7.1.3.

Let X1,. . . ,Xn be a sequence of i.i.d. Bernoulli random variables

with expectation 1/2. Let β > 0 be a constant independent of n.

What is the limit

lim
n→∞

1

n
lnE[e−β

∑n
i=1Xi]? (7.33)

A large deviations problem like this can be solved by the method of

types, which is a popular technique in information theory [CK11].

The type is synonymous with the empirical distribution of {Xi}ni=1.

The set

Pn := {P : ∃xn ∈ {0, 1}n, P = P̂xn} (7.34)

has cardinality n + 1, which, in particular, is polynomial in n. We

have

E[e−β
∑n
i=1Xi] =

∑
P∈Pn

e−βnEP [X]P[P̂Xn = P ]

.
=
∑
P∈Pn

e−βnEP [X] exp(−nD(P‖Q)) (7.35)
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where Q := Ber(1/2), and we recall that
.
= means equivalence up to

exp(o(n)) factor. The KL divergence term in (7.35) is typical in large

deviations theory (Exercise 29), which is similar to the differential

entropy term in (7.11). Since there are only polynomially many

summands in (7.35), we have

lim
n→∞

1

n
lnE[e−β

∑n
i=1Xi] = max

P
{−βEP [X ]−D(P‖Q)} (7.36)

where the max is over distribution P on {0, 1}, which is parameter-

ized by one number.
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Chapter 8

Iterative Algorithms

The Lasso problem is a convex optimization, and can be solved us-

ing the glmnet package quickly when the dimension of the unknown

signal is on the order of a few thousands. However, there are ap-

plications in which the dimension is on the order of millions, which

motivates the search for faster algorithms [IR08, TG07, HGT06]. It-

erative hard and soft thresholding algorithms are often good options

in this situation: they are faster than solving `0 and `1 regularized

minimizations, yet the accuracies are generally better than greedy

algorithms such as orthogonal matching pursuits.

Remarkably, with an additional (and apparently mysterious) decor-

relation term for the iterative thresholding algorithm, one obtains

the approximate message passing algorithm (AMP). Asymptotically,

AMP achieves identical accuracy as Lasso for select (e.g. i.i.d. Gaus-

sian) matrix ensembles. Moreover, the asymptotic behaviors of AMP
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can be analyzed precisely. Thus this sometimes provides rigorous

proofs to claims about large systems suggested by replica calcula-

tions.

Unless otherwise noted, in this chapter we consider the setting

where we seek to reconstruct an unknown vector x? ∈ Rp from linear

observations

y = Ax? + w ∈ Rn. (8.1)

8.1 Iterative thresholding

8.1.1 Derivation From Regularized Least Squares

Let ρ : R → R be a “nice” function, and consider the following

general optimization problem

x̂ := argminx∈Rp
1

2
‖y − Ax‖2

2 + ρ(x) (8.2)

where, by an abuse of notation, ρ(x) :=
∑p

j=1 ρ(xj). The normal

equation reads as

−(y − Ax)>A + ρ′(x) = 0. (8.3)

In the case of Lasso, we should choose ρ(x) = |x| and hence ρ′(x) =

sign(x). Unfortunately, (8.3) does not have an analytic solution in
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that case. Let us rewrite (8.3) using the prox operator notation in

(6.80). That is, define functions g, η by

g(x) := x + ρ′(x); (8.4)

η(x) := g−1(x). (8.5)

(Here, we used η to denote the prox1(ρ) in (6.80).) Now (8.3) is

equivalent to

−x− (y − Ax)>A + g(x) = 0, (8.6)

and, in turn,

x = η(x + (y − Ax)>A). (8.7)

This leads to the following iterative algorithm: start with x0 = 0

and proceed by

xt+1 = η(A>zt + xt), (8.8)

zt = y − Axt. (8.9)

Iterative Soft Thresholding

Taking ρ(t) := λ|t|, we obtain η(t) = sign(t) max{|t|−λ, 0}. In this

case, the iterations (8.8)-(8.9) are called Iterative Soft Thresholding.
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Iterative Hard Thresholding

From (8.5) we see that η(y) = argmint{1
2|y−t|

2+ρ(t)}. In particular,

taking ρ(t) := λ1{t 6= 0} we get η(y) = y1|y|>
√

2λ. In this case, the

iterations (8.8)-(8.9) are called Iterative Hard Thresholding.

8.1.2 The Issue of Convergence

In general, the iterative algorithm (8.8)-(8.9) is not guaranteed to

convergence. To see this, consider the simplest example where ρ(·) is

constant, in which case η is the identity function. Then the iterative

algorithm reads as

xt+1 = A>y + (Ip − A>A)xt. (8.10)

We see that xt converges if all eigenvalues of Ip−A>A are in (−1, 1)

(equivalently, all singular values of A are in (0,
√

2)). But otherwise,

xt may not converge for some initialization and y.

On the other hand, if A is an orthogonal matrix and ρ is a general

convex function, we see that

xt+1 = η(A>y + (Ip − A>A)xt) (8.11)

= η(A>y) (8.12)

converges in just one iteration!

With these examples of extreme cases in mind, it may not come

as a surprise that
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Theorem 37. Assume that ρ(t) = |t|q, q ≥ 1, and A has opera-

tor norm strictly smaller than 1 and a trivial null space. Then

xt converges to the solution of (8.2).

Indeed, under the conditions of Theorem 37, the mapping x 7→
η(A>y + (Ip − A>A)x) is a (strict) contraction under the `2 norm,

therefore the convergence to the unique fixed point follows immedi-

ately from the Banach fixed point theorem. A reference for the proof

of Theorem 37 (along with some generalizations to the Banach space

settings) can be found in [DDDM04].

In practice, Theorem 37 suggests that one should perform a cer-

tain “batch normalization” for the the sample matrix A, before run-

ning the iterative thresholding algorithm.

While the cost function in Theorem 37 is general enough to cover

the `1 norm (take q = 1), unfortunately, this result is not applicable

to the case of p > n where A has nontrivial null-space. Conse-

quently, for the general sparse recovery problem with p > n and

k < n, the soft-thresholding algorithm does not produce the same

solution as Lasso; indeed, this is noted in the numerical experiments

[DMM09]. Nevertheless, iterative hard thresholding still seems to

enjoy competitive statistical accuracy and computational efficiency,

despite the lack of theoretical convergence guarantees.
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8.2 Approximate Message Passing

8.2.1 The Algorithm

The Approximate Message Passing (AMP) algorithm starts with

x0 = x−1 = 0 ,z−1 = 0, and computes

zt = y − Axt +
1

δ
zt−1

〈
η′t−1(A>zt−1 + xt−1)

〉
, (8.13)

xt+1 = ηt(A
>zt + xt), (8.14)

for t = 0, 1, 2, . . . Here, 〈x〉 := 1
p

∑p
j=1 xp denotes the average value

of the coordinates of a vector. ηt is a (possibly nonlinear) Lipschitz

function depending on the iteration index t. Thus, AMP can be

interpreted as an iterative thresholding algorithm with an additional

correction term 1
δz

t−1
〈
η′t−1(A>zt−1 + xt−1)

〉
. The motivations for

including this correction term are

• Note that the term 〈. . . 〉 in (8.13) is a scalar. Therefore, by

the same argument as Section 8.1.1, it is clear that when ηt is

chosen as a soft-thresholding operator, the limit point of the

iterations (assuming convergence) is the solution of Lasso. The

correspondence between the parameter in AMP (i.e. threshold

in ηt) and in Lasso is through the calibration map in [BM11b].

In contrast to the iterative thresholding algorithm, the mean

square deviation between the AMP solution and the Lasso

solution is asymptotically zero, regardless of δ and the noise
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variance. This was shown empirically in [DMM09] and theo-

retically in [BM11b, Theorem 1.8] for Gaussian matrices and

assuming the weak convergence of the empirical distributions

(P̂x?)
∞
p=1.

• Asymptotically, the correction cancels some annoying correla-

tions in the state evolution analysis, so that the asymptotic

behavior of AMP can be precisely characterized. Then by the

previous point, [BM11b] also obtained a rigorous proof of the

weak limit of (P̂x̂Lasso)
∞
p=1 (cf. Section 7.1.8).

8.2.2 Asymptotic Results

Consider the following setting:

• {A(p)}p≥1 is a sequence of random matrices indexed by p. We

may drop the argument p later when no confusion. A ∈ Rn×p,

with i.i.d. entries Aij ∼ N (0, 1/n), and assume that n/p →
δ ∈ (0,∞);

• {x?(p)}p≥1, and the empirical distribution of its entries con-

verge weakly to a probability measure PX? on R with bounded

(2k − 2)-th moment, and EP̂x?(p)[X
2k−2]→ EPX? [X

2k−2], p→
∞, for some k ≥ 2;

• The noise w has i.i.d. entries with distribution PW which has

bounded (2k − 2)-th moment, and variance σ2;
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• ψ : R2 → R is a pseudo-Lipschitz function of order k (see

[BM11a]);

• {ηt}t≥0 is a sequence of scalar functions where each ηt : R →
R is Lipschitz continuous (hence almost everywhere differen-

tiable).

Theorem 38. Assume the setting in the itemized above. Let y

be generated from the observation model (8.1), and let xt be the

solution produced by the AMP iterations (8.14)-(8.13). Then for

any t ≥ 0 fixed (independent of p),

lim
p→∞

1

p

p∑
i=1

ψ(xt+1
i , x?i ) = E[ψ(ηt(X

? + τtZ), X?)] (8.15)

where X? ∼ PX? and Z ∼ N (0, 1) are independent, and the

scalars τt are defined as follows: τ̂ 2
0 = E[(X?)2], and

τ 2
t = σ2 + δ−1τ̂ 2

t ; (8.16)

τ̂ 2
t+1 = E[|ηt(X? + τtZ)−X?|2] (8.17)

for t = 0, 1, 2 . . .

Remark 12. It is expected that the result of Theorem 38 continues to

hold when the measurement matrix A has i.i.d. entries not necessar-

ily Gaussian but only satisfying milder conditions (i.e. universality)

[BM11a]. However, as with many similar problems in the random
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matrix theory, characterizing all distributions in the universality class

is an outstanding mathematical problem.

Remark 13. By (8.15), the asymptotic MSE limp→∞
1
p

∑p
i=1 ‖xt+1

i −
x?‖2

2 is finite iff τ 2
t is finite. By letting t → ∞, letting PX? be

a distribution with an atom at zero, and in view of the asymptotic

equivalence between Lasso and AMP solutions [BM11b], Theorem 38

yields a characterization for the noise sensitivity phase transition,

that is, the iterations (8.16) and (8.17) must converge to some fi-

nite value. Interestingly, an alternative characterization of the noise

sensitivity transition was found in [DT05, Don06] via combinatorial

geometry, which is equivalent but has an apparently different form

[DMM09].

8.2.3 The Least Squares Example

Take ηt as the identity scalar function, and it is easy to see that the

fixed point of the AMP iterations is the least squares solution. In

(8.15), take X? as constant 0, and we see

lim
p→∞

1

p
‖x∞‖2

2 = τ 2
∞ (8.18)

while computing the fixed point in (8.16)-(8.17) gives τ 2
∞ = σ2δ

δ−1,

which is the same solution we previously computed using the leave-

one-out method and the replica method.
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8.2.4 A Proof via the Path Representation

In this section, we give a proof of Theorem 38. Some computations of

bounding the approximation errors will not be shown, we mostly fo-

cus on showing how the solution emerges. The proof given here is by

rewriting the key quantities using paths on a bipartite graph, which

appears to be more transparent than the conditioning technique in

the original paper [BM11a].

We will see by inductions that

τ 2
t ≈

1

n
‖zt‖2

2, (8.19)

τ̂ 2
t ≈

1

p
‖xt‖2

2. (8.20)

Here and below, ≈ means approximation up to a term of mean and

variance o(1). On the other hand, the first a few iterations in (8.16)-

(8.17) are

τ 2
0 = σ2, (8.21)

τ̂ 2
1 = E|η0(τ0Z)|2 (8.22)

τ 2
1 = σ2 + δ−1τ̂ 2

1 (8.23)

. . . (8.24)

In the AMP iterations (8.13)-(8.14), we start with z0 = w. There-

fore for any a ∈ [n],

z0
a = wa (8.25)
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which verifies that z0
a is approximately N (0, τ 2

0 ) in distribution, and

(8.19) holds for t = 0. Next, for any i ∈ [p],

x1
i = η0(

∑
a∈[n]

Aaiwa). (8.26)

By the central limit theorem,
∑

a∈[n]Aaiwa is close to Gaussian with

variance n· 1nσ
2. This shows that x1

i is close to η0(τ0Z) in distribution,

and hence (8.20) is verified for t = 1. Next, for any b ∈ [n],

z1
b = wb −

∑
i∈[p]

Abix
1
i + δ−1z0

b

〈
η′0(x1)

〉
. (8.27)

If x1, w andAwere independent, we would have thatwb−
∑

i∈[p]Abix
1
i

approximates σZ ′ +
√

p
n ·

1
p‖x1‖2

2Z ≈ σZ ′ +
√
δ−1τ̂ 2

1Z in distribu-

tion, where Z,Z ′ are i.i.d. N (0, 1), which verifies (8.19) for t = 1

since τ 2
1 := σ2 +δ−1τ̂ 2

1 . In reality, however, independence is not true,

while the last correction term in (8.27) cancels the correlation so that

the above intuition works through. To see this, consider

z1
b = wb −

∑
i∈[p]

Abiη0(
∑
a∈[n]

Aaiwa) + δ−1z0
b

〈
η′0(x1)

〉
(8.28)

≈ wb −
∑
i∈[p]

Abi

η0(
∑
a 6=b

Aaiwa) + η′0(
∑
a 6=b

Aaiwa))Abiwb


+ δ−1z0

b

〈
η′0(x1)

〉
(8.29)
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= wb −
∑
i∈[p]

Abiη0(
∑
a 6=b

Aaiwa)

−
∑
i∈[p]

A2
biη
′
0(
∑
a 6=b

Aaiwa))wb + δ−1z0
b

〈
η′0(x1)

〉
. (8.30)

Remark that although η0(
∑

a 6=bAaiwa) dominates η′0(
∑

a 6=bAaiwa))Abiwb,

the
∑

i∈[p]Abiη0(
∑

a 6=bAaiwa) is comparable to
∑

i∈[p]A
2
biη
′
0(
∑

a 6=bAaiwa))wb,

since the former is zero mean with variance of order p/n, and the

latter has mean p/n. In other words, in the Taylor expansion step

we decomposed η0(
∑

a∈[n]Aaiwa) into a main term uncorrelated with

Abi and another term smaller but correlated with Abi.

Since η0(
∑

a 6=bAaiwa) is approximately x1
i , we see that the two

terms on the first line in (8.30) is approximately σZ ′ +
√
δ−1τ̂ 2

1Z

as in the idealized setting before, so it remains to show that the two

terms in the last line in (8.30) cancel. To see the cancellation, note

that by concentration of measure and independence, we have

∑
i∈[p]

A2
biη
′
0(
∑
a 6=b

Aaiwa))wb ≈ E

∑
i∈[p]

A2
biη
′
0(
∑
a 6=b

Aaiwa))

 (8.31)

=
∑
i∈[p]

E
[
A2
bi

]
E

η′0(
∑
a 6=b

Aaiwa))


(8.32)

125



=
1

n

∑
i∈[p]

E

η′0(
∑
a 6=b

Aaiwa))

 (8.33)

≈ δ−1
〈
η′0(x1)

〉
. (8.34)

Thus indeed we have the following which justifies the cancellation:

z1
b ≈ wb −

∑
i∈[p]

Abiη0(
∑
a 6=b

Aaiwa). (8.35)

Consider one more iteration: for each j ∈ [p],

x2
j = η1(

∑
b∈[n]

Abjz
1
b + x1

j). (8.36)

Inside the parenthesis,∑
b∈[n]

Abjz
1
b + x1

j

≈
∑
b∈[n]

Abj

wb −∑
i∈[p]

Abiη0(
∑
a 6=b

Aaiwa)

 + x1
j (8.37)

=
∑
b∈[n]

Abj

wb −∑
i6=j

Abiη0(
∑
a 6=b

Aaiwa)


−
∑
b∈[n]

A2
bjη0(

∑
a 6=b

Aajwa) + x1
j (8.38)
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≈
∑
b∈[n]

Abj

wb −∑
i 6=j

Abiη0(
∑
a 6=b

Aaiwa)

 . (8.39)

The approximation in (8.38) follows since∑
b∈[n]

A2
bjη0(

∑
a 6=b

Aajwa) ≈
∑
b∈[n]

A2
bjη0(

∑
a∈[n]

Aajwa) (8.40)

≈ η0(
∑
a∈[n]

Aaiwa)

= x1
i . (8.41)

By the independence of {Abj}b∈[n] and
{
wb −

∑
i 6=j Abiη0(

∑
a 6=bAaiwa)

}
b∈[n]

,

(8.39) is approximately Gaussian with variance

1

n

∥∥∥∥∥∥∥
wb −∑

i6=j

Abiη0(
∑
a 6=b

Aaiwa)


b∈[n]

∥∥∥∥∥∥∥
2

2

(8.42)

≈ 1

n

∥∥∥∥∥∥∥
wb −∑

i∈[p]

Abiη0(
∑
a 6=b

Aaiwa)


b∈[n]

∥∥∥∥∥∥∥
2

2

(8.43)

≈ 1

n

∥∥z1
∥∥2

2
(8.44)

≈ τ 2
1 . (8.45)
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Thus, returning to (8.36), x2
j is approximately ηt(τ1Z) in distribu-

tion, which verifies (8.20) for t = 2.

The pattern of the induction is clear now. In the special case of

ηt being the identity function (i.e., the least squares example), we

can approximate the iterations by the explicit formulae

xti ≈
t∑

s=1

1− (−1)s

2

∑
γ∈Γsi

L(γ); (8.46)

zta ≈
t∑

s=0

1 + (−1)s

2

∑
γ̄∈Γ̄sa

L(γ̄). (8.47)

Here, Γsi is the set of all s-step none-returning paths on the com-

plelte bipartite graph Kp,n starting from the left vertex i, and L(γ)

is the cost of the walk defined by A and w. Non-returning means

γ(s + 1) 6= γ(s− 1) for each time s. For example, j → b→ i→ a

is a path in Γ3
j if i 6= j, a 6= b, and the associated cost is

L(γ) = AbjAbiAaiwa. (8.48)

Similarly, Γ̄sa is the set of non-returning paths starting from the right

vertex a of length s. For example, γ̄ ∈ Γ̄4
c if it is a path c → j →

b→ i→ a where b 6= c, i 6= j, a 6= b, and the associated cost is

L(γ̄) = AcjAbjAbiAaiwa. (8.49)

We can verify that (8.46)-(8.47) satisfy the AMP iterations. Non-

returning paths enter the picture because once the path returns, the
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corresponding terms cancel with the xt or the δ−1zt−1
〈
η′t−1(xt)

〉
term.

Remark 14. The path representation is also useful in random matrix

theory: it can be used to compute all the moments of the spectral

measure (Exercise 32), and then characterize the limiting law of the

spectrum of the random matrix.
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Chapter 9

Problem Set

[updated weekly. A total of ≥ 25 points of problems due before the

midterm and another ≥ 25 points of problems due before the final.]

SGD query lower bound, variable selection

Exercise 1 (2 points). Use the union bound to prove the estimate

of the Gaussian max in (1.11). In fact, note that the bound holds

even when ξi’s are correlated.

Exercise 2 (2 points). Show that the soft thresholding estimator

(see (1.21)) achieves the oracle `2 error up to a logarithmic factor.

Exercise 3 (2 points). In the section on the James-Stein estimator,

suppose that the noise may be biased, i.e., ξi ∼ N (µ, σ2) for some

µ ∈ R. Find an analogue of the James-Stein estimator in this setting,

so that the naive estimator θ̂naive = Y −µ is shown to be inadmissible.
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Exercise 4 (4 points). [Gaussian integration by parts] Suppose that

f is a smooth function with compact support on Rd. Let Y ∼
N (θ, σ2Id×d). Use integration by parts to show that

Eθ[(θi − Yi)f (Y )] = −ε2Eθ
[
∂f

∂yi
(Y )

]
(9.1)

for i = 1, . . . , d.

Note: once the formula is proven for nice (smooth, compactly

supported function), it can be extended to more general class of

functions by standard approximation arguments.

Exercise 5 (2 points). Show that when n = d and X = Id, BIC and

Lasso are reduced to the hard-thresholding and the soft thresholding

estimators for the Gaussian sequence model.

Exercise 6 (4 points). Suppose that the basis pursuit algorithm in

(1.62) is replaced by the following1

θ̂BP ∈ argminθ : Y=Xθ ‖θ‖q. (9.2)

where q ∈ (0, 1] and ‖θ‖q := (
∑d

j=1 |θj|q)1/q. For such general q,

write a counterpart of the null space condition (Definition 9), and

prove a counterpart of the equivalence result Theorem 10.
1Note this is no longer a convex optimization when q < 1. In practice we can try to

solve this optimization by gradient descent and the performance turns out to be quite good
empirically, although there is no theoretical guarantees of finding the global minimum.
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Exercise 7 (2 points). Use Chernoff’s inequality to prove the fol-

lowing Chi-square tail bound: for Xd ∼ N (0, Id) and any t > 0,

P[|‖Xd‖2
2 − d| ≥ 2

√
dt + 2t] ≤ 2e−t. (9.3)

[Hint: p. 43 [BLM13]]

Exercise 8 (4 points). Observe that Gordon’s theorem (Theorem 13)

shows that whenever w(K) ≤ 0.5
√
n and n is large, than K∩ ν = ∅

with high probability. Find an example of K satisfying w(K) ≤
√
n

yet K∩ ν 6= ∅ almost surely. (This shows the sharpness of Gordon’s

theorem.)

Exercise 9 (3+3 points). Let K be a convex cone in Rd. Show the

following relation between the statistical dimension and the Gaussian

width:

w2(K ∩ Sd−1) ≤ δ(K) ≤ w2(K ∩ Sd−1) + 1 (9.4)

where Sd−1 denotes the unit sphere in Rd. Each side of the inequality

is worth 3 points. [Hint: the left inequality follows relatively easily

from Jensen’s inequality. To show the right inequality, we need

Var(supz∈K∩Sd−1 z
>G) ≤ 1, which can be shown using the fact

that a 1-Lipschitz function of a Gaussian vector has variance

≤ 1 (Gaussian poincare inequality).]

Exercise 10 (4 points). Recall the descent cone D(θ) defined in

(1.95). Show that if θ ∈ Rd is k-sparse (d ≥ 2k) then the statistical
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dimension has the order k log d
2k . δ(D(θ)) . k log d. [Hint: simi-

lar to Theorem 14. The difference is that the set of interest here

is not union over all k-sparse vectors.]

Exercise 11 (2 points). Suppose that X ∈ Rp follows the distri-

bution N (0,Θ−1). Let u, v ∈ {1, . . . , p} and u 6= v. Show that the

distribution of (Xu, Xv) given X{1,...,p}\{u,v} = 0 is N (0, Θ̄−1) where

Θ̄ ∈ R2×2 denotes the restriction of Θ on the u-th and v-th rows and

columns. Then verify the claim in (2.3).

Exercise 12 (2 points). Let S be a rank-deficient positive-semidefinite

matrix. Show that the maximum likelihood estimate of the precision

matrix in the Gaussian graphical model (see (2.6)) does not exist

(i.e. there is no Θ achieving the maximum).

Exercise 13 (2 points). Verify that graphical lasso (2.7) is convex

optimization.

Exercise 14 (2+2 points). Let Y ∈ Rn×T be a given matrix.

• Let k ≤ min{n, T}. Find an explicit formula for

argminΘ∈Rn×T , rank(Θ)≤k ‖Y− Θ‖2
F .

[Hint: consider the singular value decomposition of Y.]

• Let X ∈ Rn×d be another given matrix. Let k ≤ min{d, T}.
Find an explicit formula for

argminΘ∈Rd×T , rank(Θ)≤k ‖Y− XΘ‖2
F .
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[Hint: use the decomposition ‖Y−XΘ‖2
F = ‖Y−Ȳ‖2

F+‖Ȳ−
XΘ‖2

F where Ȳ := X(X>X)†X>Y denotes the orthogonal

projection of Y onto the image space of X.]

Exercise 15 (3 points). In Theorem 18, suppose that Λj and Λ∗j
are all smooth convex functions. Show that u1, . . . , uk achieve the

infimum if there exists v such that any one of the following is true:

• Λ∗j(v) + Λj(uj) = 〈v, uj〉 for each j.

• ∇Λj(uj) = v for each j.

• ∇Λ∗j(v) = uj for each j.

Exercise 16 (2+2 points). Prove the relation of the coherence pa-

rameters in Definition 24-25

µ1 ≤ µ2 ≤ µ2
1r. (9.5)

[Hint: each inequality follows by a one-line proof. You may also

try to find it in [CLMW11, Che15]]

Exercise 17 (4 points). Let

L0 =

(
Σ 0

0 0

)
∈ Rn2 (9.6)
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where Σ ∈ Rr×r is a diagonal matrix with positive entries. Show

that the subdifferential of the Schatten 1-norm at L0 takes the form

∂‖L0‖s1 =

{(
Ir 0

0 W

)}
(9.7)

where W ∈ R(n−r)×(n−r) is any matrix with operator norm bounded

by 1.

Exercise 18 (2 points). Show the equivalence of (5.9) and (5.10)

Exercise 19 (2 points). Show the data processing inequality for the

KL divergence, that is, justify the step (5.15) in the proof of Fano’s

inequality.

Exercise 20 (2 points). Use the definition of the KL divergence to

give a proof of the step (5.20).

Exercise 21 (2 points). Justify (5.23); more precisely, show that

|B| = Θ

(
1√
d

exp(dh(k/d))

)
(9.8)

where B denotes the Hamming ball in {0, 1}d of radius k. [Hint: Let

X1, . . . , Xd be i.i.d. Ber(k/d). Show that P[ρ(Xd) = k] = Θ( 1√
d
);

show that − logP[Xd = xd] = dh(k/d) for any xd ∈ B.]
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Exercise 22 (4 points). Let P0 and P1 be two probability measures.

Show that for any test ψ,

max
j=0,1

Pj[ψ 6= j] ≥ 1

4
exp(−D(P0‖P1)). (9.9)

[Hint: Consider the data processing inequality for the KL diver-

gence.]

Exercise 23 (5 points). In the Gaussian sequence model, suppose

that the parameter space is B1(R) = {θ : ‖θ‖1 ≤ R}, where R is

polynomial in d. Show that for any δ ∈ (0, 1), there exists c > 0

such that

inf
θ̂

sup
θ∈B1(R)

P[‖θ̂ − θ‖2
2 ≥ cRσ

√
log

dσ

R
] ≥ 1− δ. (9.10)

[Hint: Choose a packing in which vectors are k-sparse and each

have 1-norm R. The squared risk is then R2/k whereas the mu-

tual information is order R2

kσ2
which should equal k log d

k by the

GV bound. The latter shows that we should pick k ∼ R
σ

√
1

log d
k

.]

Exercise 24 (3 points). Prove the equivalence in distribution in

(6.2). [Hint: First show the rotation invariance of θ̂: if Q ∈ Rp×p

is any (deterministic) orthogonal matrix, then θ̂ and Qθ̂ have the

same distribution.]
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Exercise 25 (2 points). Given a proof of the Sherman-Morrison

formula for the rank-1 update for matrix inversion:

(A + uv>)−1 = A−1 − A−1uv>A−1

1 + v>A−1u
(9.11)

where A is an invertible matrix and u, v are vectors.

Exercise 26 (3 points). In the example of Section 6.1, show that

the test error converges to δ
δ−1. That is, when there is new data

wnew, Anew, we have

E[|Anewθ̂ − wnew|2]→ δ

δ − 1
(9.12)

as p→∞.

Exercise 27 (4 points). Suppose that, in lieu of (9.13), we define

the partition function as

Z(β, γ, n) :=

∫
e−

β
2n‖w−Aθ‖2+γ

∑p
j=1 φ(θj)dθ, (9.13)

where both β, γ > 0 are constants independent of n, and φ(·) is a

given function on R. Show that

lim
β→∞

lim
p→∞

1

p

∂

∂γ
E[lnZ(β, γ, n)]

∣∣∣∣
γ=0

= lim
p→∞

1

p

p∑
j=1

φ(θ̂j) (9.14)

where θ̂ denotes the solution to the least squares problem (7.2).
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Exercise 28 (2 points). In the setting of Section 7.1.7, show that

lim
β→+∞

1

β
E[lnZ(β, n)] = − 1

2n
min
θ
‖w −Aθ‖2 (9.15)

Exercise 29 (4 points). Justify the step (7.35), that is, show that

P[P̂Xn = P ]
.
= exp(−nD(P‖Q)). (9.16)

[Hint: first show that for any xn satisfying P̂xn = P , we have

P[Xn = xn] = exp(−nEP [log 1
Q(X)]). Then use the result of Ex-

ercise 21 to show the cardinality estimate |{xn : P̂xn = P}| .=
exp(−nEP [logP (X)]).]

Exercise 30 (3 points). In deriving (7.36), why did we need the

fact that there are only polynomially many summands in (7.35)?

Exercise 31 (3 points). Show that it is information-theoretically

impossible to find a planted clique of size 2(1 − δ) log2 n with er-

ror probability 1 − δ in an Erdos-Renyi graph of size n with edge

connection probability 1/2. [Hint: The number of k-cliques is
(
n
k

)
.

Moreover, D(P‖Q) = log 2
k(k−1)

2 , where P is the edge distribution

in any planted k-clique graph, and Q is the edge distribution in

the Erdos-Renyi graph. Then use the Fano inequality.]

Exercise 32 (4 points). Let An×p be a random matrix with i.i.d.

entries, Aij ∼ N (0, 1), and n/p = δ is fixed. Use either the
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Marchenko-Pastur Law or the path method to compute the limit

E[tr(A>AA>A)] as p → ∞. [Hint: for the Marchenko-Pastur

Law, try to apply change of variables and use the fact that
∫
µ =

1. For the path method, it should be similar to the computa-

tion in Section 8.2.4, but simpler.] [Note: once all moments of

the spectral measure are calculated, it is not far from deriving

the Marchenko-Pastur Law; this is called the moment method

[AGZ10].]

Exercise 33 (3 points). Let A = A> ∈ Rn×n be the Wigner ran-

dom matrix where the Ai,j are independent for j ≥ i, Ai,j ∼ N (0, 1)

for i 6= j, and Ai,i ∼ N (0, 2). Set x0 be the all 1’s vector, and con-

sider the iterations

xt+1 = Axt − xt−1. (9.17)

Show that for each fixed t, the distribution of xt1 converges toN (0, 1)

as n → ∞. [Hint: similar to the computation in Section 8.2.4,

but simpler. Work with an undirected graph instead of a bipar-

tite graph. This exercise was also mentioned in https: // www.

youtube. com/ watch? v= ZlTNcXzcemA& t= 1523s ]
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